000281786 001__ 281786
000281786 005__ 20240712112829.0
000281786 0247_ $$2doi$$a10.1016/j.electacta.2015.12.161
000281786 0247_ $$2ISSN$$a0013-4686
000281786 0247_ $$2ISSN$$a1873-3859
000281786 0247_ $$2WOS$$aWOS:000371141500133
000281786 0247_ $$2altmetric$$aaltmetric:33345953
000281786 037__ $$aFZJ-2016-01455
000281786 041__ $$aEnglish
000281786 082__ $$a540
000281786 1001_ $$0P:(DE-HGF)0$$aLi, Dongjiang$$b0
000281786 245__ $$aDegradation Mechanisms of C6/LiFePO4 Batteries: Experimental Analyses of Calendar Aging
000281786 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2016
000281786 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1455001483_7292
000281786 3367_ $$2DataCite$$aOutput Types/Journal article
000281786 3367_ $$00$$2EndNote$$aJournal Article
000281786 3367_ $$2BibTeX$$aARTICLE
000281786 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000281786 3367_ $$2DRIVER$$aarticle
000281786 520__ $$aThe capacity loss and material decay of C6/LiFePO4 (LFP) batteries have been investigated under various storage conditions in dependence of State-of-Charge (SoC) and temperature. The electromotive force (EMF) curves, which are regularly determined by mathematical extrapolation of the measured voltage discharge curves, are used to investigate the aging mechanisms during storage. The irreversible capacity loss, which is accurately determined on the basis of the maximum storage capacity estimated from the EMF curves, increases as a function of temperature and SoC. The cyclable Li-ion loss during storage is considered to be the main source of the irreversible capacity loss. Strikingly, the inaccessibility of graphite is observed during storage at 60 °C. The graphite capacity decay has been quantitatively determined by non-destructive analyses on the basis of dVEMF/dQ curves. Deposition of Fe on the graphite electrode has experimentally been confirmed by X-ray photoelectron spectroscopy (XPS). The increasing graphite inaccessibility is shown to be the consequence of Fe dissolution from the cathode and the subsequent deposition onto the anode.
000281786 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000281786 588__ $$aDataset connected to CrossRef
000281786 7001_ $$0P:(DE-HGF)0$$aDanilov, Dmitri L.$$b1
000281786 7001_ $$0P:(DE-HGF)0$$aXie, Jie$$b2
000281786 7001_ $$0P:(DE-HGF)0$$aRaijmakers, Luc$$b3
000281786 7001_ $$0P:(DE-HGF)0$$aGao, Lu$$b4
000281786 7001_ $$0P:(DE-HGF)0$$aYang, Yong$$b5
000281786 7001_ $$0P:(DE-Juel1)165918$$aNotten, Peter H. L.$$b6$$eCorresponding author
000281786 773__ $$0PERI:(DE-600)1483548-4$$a10.1016/j.electacta.2015.12.161$$gVol. 190, p. 1124 - 1133$$p1124 - 1133$$tElectrochimica acta$$v190$$x0013-4686$$y2016
000281786 8564_ $$uhttps://juser.fz-juelich.de/record/281786/files/1-s2.0-S0013468615310860-main.pdf$$yRestricted
000281786 8564_ $$uhttps://juser.fz-juelich.de/record/281786/files/1-s2.0-S0013468615310860-main.gif?subformat=icon$$xicon$$yRestricted
000281786 8564_ $$uhttps://juser.fz-juelich.de/record/281786/files/1-s2.0-S0013468615310860-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000281786 8564_ $$uhttps://juser.fz-juelich.de/record/281786/files/1-s2.0-S0013468615310860-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000281786 8564_ $$uhttps://juser.fz-juelich.de/record/281786/files/1-s2.0-S0013468615310860-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000281786 8564_ $$uhttps://juser.fz-juelich.de/record/281786/files/1-s2.0-S0013468615310860-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000281786 909CO $$ooai:juser.fz-juelich.de:281786$$pVDB
000281786 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165918$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000281786 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000281786 9141_ $$y2016
000281786 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000281786 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bELECTROCHIM ACTA : 2014
000281786 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000281786 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000281786 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000281786 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000281786 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000281786 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000281786 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000281786 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000281786 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000281786 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000281786 920__ $$lyes
000281786 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0
000281786 980__ $$ajournal
000281786 980__ $$aVDB
000281786 980__ $$aUNRESTRICTED
000281786 980__ $$aI:(DE-Juel1)IEK-9-20110218
000281786 981__ $$aI:(DE-Juel1)IET-1-20110218