000281788 001__ 281788
000281788 005__ 20240610120903.0
000281788 0247_ $$2doi$$a10.1016/j.medengphy.2015.08.009
000281788 0247_ $$2WOS$$aWOS:000370770800002
000281788 0247_ $$2altmetric$$aaltmetric:4476253
000281788 0247_ $$2pmid$$apmid:26343228
000281788 037__ $$aFZJ-2016-01457
000281788 082__ $$a610
000281788 1001_ $$0P:(DE-Juel1)145415$$aMüller, Kathrin$$b0
000281788 245__ $$aUnderstanding particle margination in blood flow - A step toward optimized drug delivery systems
000281788 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2016
000281788 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1455001926_7284
000281788 3367_ $$2DataCite$$aOutput Types/Journal article
000281788 3367_ $$00$$2EndNote$$aJournal Article
000281788 3367_ $$2BibTeX$$aARTICLE
000281788 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000281788 3367_ $$2DRIVER$$aarticle
000281788 520__ $$aTargeted delivery of drugs and imaging agents is very promising to develop new strategies for the treatment of various diseases such as cancer. For an efficient targeted adhesion, the particles have to migrate toward the walls in blood flow - a process referred to as margination. Due to a huge diversity of available carriers, a good understanding of their margination properties in blood flow depending on various flow conditions and particle properties is required. We employ a particle-based mesoscopic hydrodynamic simulation approach to investigate the margination of different carriers for a wide range of hematocrits (volume fraction of red blood cells) and flow rates. Our results show that margination strongly depends on the thickness of the available free space close to the wall, the so-called red blood cell-free layer (RBC-FL), in comparison to the carrier size. The carriers with a few micrometers in size are comparable with the RBC-FL thickness and marginate better than their sub-micrometer counterparts. Deformable carriers, in general, show worse margination properties than rigid particles. Particle margination is also found to be most pronounced in small channels with a characteristic size comparable to blood capillaries. Finally, different margination mechanisms are discussed.
000281788 536__ $$0G:(DE-HGF)POF3-553$$a553 - Physical Basis of Diseases (POF3-553)$$cPOF3-553$$fPOF III$$x0
000281788 7001_ $$0P:(DE-Juel1)140336$$aFedosov, Dmitry$$b1$$eCorresponding author
000281788 7001_ $$0P:(DE-Juel1)130665$$aGompper, Gerhard$$b2
000281788 773__ $$0PERI:(DE-600)2019106-6$$a10.1016/j.medengphy.2015.08.009$$n1$$p2-10$$tMedical engineering & physics$$v38$$x1350-4533$$y2016
000281788 8564_ $$uhttps://juser.fz-juelich.de/record/281788/files/1-s2.0-S1350453315001897-main.pdf$$yRestricted
000281788 8564_ $$uhttps://juser.fz-juelich.de/record/281788/files/1-s2.0-S1350453315001897-main.gif?subformat=icon$$xicon$$yRestricted
000281788 8564_ $$uhttps://juser.fz-juelich.de/record/281788/files/1-s2.0-S1350453315001897-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000281788 8564_ $$uhttps://juser.fz-juelich.de/record/281788/files/1-s2.0-S1350453315001897-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000281788 8564_ $$uhttps://juser.fz-juelich.de/record/281788/files/1-s2.0-S1350453315001897-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000281788 8564_ $$uhttps://juser.fz-juelich.de/record/281788/files/1-s2.0-S1350453315001897-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000281788 909CO $$ooai:juser.fz-juelich.de:281788$$pVDB
000281788 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145415$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000281788 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140336$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000281788 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130665$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000281788 9131_ $$0G:(DE-HGF)POF3-553$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vPhysical Basis of Diseases$$x0
000281788 9141_ $$y2016
000281788 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000281788 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000281788 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMED ENG PHYS : 2014
000281788 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000281788 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000281788 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000281788 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000281788 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000281788 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000281788 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000281788 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000281788 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000281788 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000281788 9201_ $$0I:(DE-Juel1)IAS-2-20090406$$kIAS-2$$lTheorie der Weichen Materie und Biophysik $$x0
000281788 9201_ $$0I:(DE-Juel1)ICS-2-20110106$$kICS-2$$lTheorie der Weichen Materie und Biophysik $$x1
000281788 980__ $$ajournal
000281788 980__ $$aVDB
000281788 980__ $$aUNRESTRICTED
000281788 980__ $$aI:(DE-Juel1)IAS-2-20090406
000281788 980__ $$aI:(DE-Juel1)ICS-2-20110106
000281788 981__ $$aI:(DE-Juel1)IBI-5-20200312
000281788 981__ $$aI:(DE-Juel1)IAS-2-20090406
000281788 981__ $$aI:(DE-Juel1)ICS-2-20110106