001     281788
005     20240610120903.0
024 7 _ |a 10.1016/j.medengphy.2015.08.009
|2 doi
024 7 _ |a WOS:000370770800002
|2 WOS
024 7 _ |a altmetric:4476253
|2 altmetric
024 7 _ |a pmid:26343228
|2 pmid
037 _ _ |a FZJ-2016-01457
082 _ _ |a 610
100 1 _ |a Müller, Kathrin
|0 P:(DE-Juel1)145415
|b 0
245 _ _ |a Understanding particle margination in blood flow - A step toward optimized drug delivery systems
260 _ _ |a Amsterdam [u.a.]
|c 2016
|b Elsevier Science
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1455001926_7284
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a Targeted delivery of drugs and imaging agents is very promising to develop new strategies for the treatment of various diseases such as cancer. For an efficient targeted adhesion, the particles have to migrate toward the walls in blood flow - a process referred to as margination. Due to a huge diversity of available carriers, a good understanding of their margination properties in blood flow depending on various flow conditions and particle properties is required. We employ a particle-based mesoscopic hydrodynamic simulation approach to investigate the margination of different carriers for a wide range of hematocrits (volume fraction of red blood cells) and flow rates. Our results show that margination strongly depends on the thickness of the available free space close to the wall, the so-called red blood cell-free layer (RBC-FL), in comparison to the carrier size. The carriers with a few micrometers in size are comparable with the RBC-FL thickness and marginate better than their sub-micrometer counterparts. Deformable carriers, in general, show worse margination properties than rigid particles. Particle margination is also found to be most pronounced in small channels with a characteristic size comparable to blood capillaries. Finally, different margination mechanisms are discussed.
536 _ _ |a 553 - Physical Basis of Diseases (POF3-553)
|0 G:(DE-HGF)POF3-553
|c POF3-553
|f POF III
|x 0
700 1 _ |a Fedosov, Dmitry
|0 P:(DE-Juel1)140336
|b 1
|e Corresponding author
700 1 _ |a Gompper, Gerhard
|0 P:(DE-Juel1)130665
|b 2
773 _ _ |a 10.1016/j.medengphy.2015.08.009
|0 PERI:(DE-600)2019106-6
|n 1
|p 2-10
|t Medical engineering & physics
|v 38
|y 2016
|x 1350-4533
856 4 _ |u https://juser.fz-juelich.de/record/281788/files/1-s2.0-S1350453315001897-main.pdf
|y Restricted
856 4 _ |x icon
|u https://juser.fz-juelich.de/record/281788/files/1-s2.0-S1350453315001897-main.gif?subformat=icon
|y Restricted
856 4 _ |x icon-1440
|u https://juser.fz-juelich.de/record/281788/files/1-s2.0-S1350453315001897-main.jpg?subformat=icon-1440
|y Restricted
856 4 _ |x icon-180
|u https://juser.fz-juelich.de/record/281788/files/1-s2.0-S1350453315001897-main.jpg?subformat=icon-180
|y Restricted
856 4 _ |x icon-640
|u https://juser.fz-juelich.de/record/281788/files/1-s2.0-S1350453315001897-main.jpg?subformat=icon-640
|y Restricted
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/281788/files/1-s2.0-S1350453315001897-main.pdf?subformat=pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:281788
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)145415
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)140336
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)130665
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-553
|2 G:(DE-HGF)POF3-500
|v Physical Basis of Diseases
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2016
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MED ENG PHYS : 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a No Authors Fulltext
|0 StatID:(DE-HGF)0550
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IAS-2-20090406
|k IAS-2
|l Theorie der Weichen Materie und Biophysik
|x 0
920 1 _ |0 I:(DE-Juel1)ICS-2-20110106
|k ICS-2
|l Theorie der Weichen Materie und Biophysik
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-2-20090406
980 _ _ |a I:(DE-Juel1)ICS-2-20110106
981 _ _ |a I:(DE-Juel1)IBI-5-20200312
981 _ _ |a I:(DE-Juel1)IAS-2-20090406
981 _ _ |a I:(DE-Juel1)ICS-2-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21