000281807 001__ 281807
000281807 005__ 20210129222013.0
000281807 0247_ $$2doi$$a10.1002/adfm.201500848
000281807 0247_ $$2ISSN$$a1057-9257
000281807 0247_ $$2ISSN$$a1099-0712
000281807 0247_ $$2ISSN$$a1616-301X
000281807 0247_ $$2ISSN$$a1616-3028
000281807 0247_ $$2Handle$$a2128/9829
000281807 0247_ $$2WOS$$aWOS:000363685900011
000281807 037__ $$aFZJ-2016-01474
000281807 041__ $$aEnglish
000281807 082__ $$a620
000281807 1001_ $$0P:(DE-HGF)0$$aJost, Peter$$b0$$eCorresponding author
000281807 245__ $$aDisorder-Induced Localization in Crystalline Pseudo-Binary GeTe-Sb 2 Te 3 Alloys between Ge 3 Sb 2 Te 6 and GeTe
000281807 260__ $$aWeinheim$$bWiley-VCH$$c2015
000281807 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1454507429_9286
000281807 3367_ $$2DataCite$$aOutput Types/Journal article
000281807 3367_ $$00$$2EndNote$$aJournal Article
000281807 3367_ $$2BibTeX$$aARTICLE
000281807 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000281807 3367_ $$2DRIVER$$aarticle
000281807 520__ $$aDisorder has a tremendous impact on charge transport in crystalline compounds on the pseudo-binary line between Sb2Te3 and GeTe. Directly after crystallization, the pronounced disorder on the cation sublattice renders crystalline Ge1Sb2Te4—a composition with a carrier density of the order of 1020 cm−3—an Anderson insulator. Annealing, however, induces the reduction of disorder and eventually triggers an insulator-to-metal transition. This study presents data on the electrical properties, the optical conductivity, and structural properties of the pseudo-binary compositions between Ge3Sb2Te6 and GeTe. In contrast to the preceding investigations, which rely on the annealing temperature for tuning the electrical properties, this study elucidates the impact of stoichiometry and demonstrates that the stoichiometry may be employed as an alternative control parameter for the metal-to-insulator transition. The combination of annealing temperature and stoichiometry, therefore, provides a rich playground for tailoring disorder and, as a consequence, the transport of charge.
000281807 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000281807 588__ $$aDataset connected to CrossRef
000281807 7001_ $$0P:(DE-HGF)0$$aVolker, Hanno$$b1
000281807 7001_ $$0P:(DE-HGF)0$$aPoitz, Annika$$b2
000281807 7001_ $$0P:(DE-HGF)0$$aPoltorak, Christian$$b3
000281807 7001_ $$0P:(DE-HGF)0$$aZalden, Peter$$b4
000281807 7001_ $$0P:(DE-HGF)0$$aSchäfer, Tobias$$b5
000281807 7001_ $$0P:(DE-HGF)0$$aLange, Felix R. L.$$b6
000281807 7001_ $$0P:(DE-HGF)0$$aSchmidt, Rüdiger M.$$b7
000281807 7001_ $$0P:(DE-Juel1)125595$$aHolländer, Bernhard$$b8
000281807 7001_ $$0P:(DE-HGF)0$$aWirtssohn, Matti R.$$b9
000281807 7001_ $$0P:(DE-HGF)0$$aWuttig, Matthias$$b10$$eCorresponding author
000281807 773__ $$0PERI:(DE-600)2039420-2$$a10.1002/adfm.201500848$$gVol. 25, no. 40, p. 6399 - 6406$$n40$$p6399 - 6406$$tAdvanced functional materials$$v25$$x1616-301X$$y2015
000281807 8564_ $$uhttps://juser.fz-juelich.de/record/281807/files/Jost_et_al-2015-Advanced_Functional_Materials.pdf$$yOpenAccess
000281807 8564_ $$uhttps://juser.fz-juelich.de/record/281807/files/Jost_et_al-2015-Advanced_Functional_Materials.gif?subformat=icon$$xicon$$yOpenAccess
000281807 8564_ $$uhttps://juser.fz-juelich.de/record/281807/files/Jost_et_al-2015-Advanced_Functional_Materials.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000281807 8564_ $$uhttps://juser.fz-juelich.de/record/281807/files/Jost_et_al-2015-Advanced_Functional_Materials.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000281807 8564_ $$uhttps://juser.fz-juelich.de/record/281807/files/Jost_et_al-2015-Advanced_Functional_Materials.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000281807 8564_ $$uhttps://juser.fz-juelich.de/record/281807/files/Jost_et_al-2015-Advanced_Functional_Materials.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000281807 909CO $$ooai:juser.fz-juelich.de:281807$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000281807 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125595$$aForschungszentrum Jülich GmbH$$b8$$kFZJ
000281807 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000281807 9141_ $$y2015
000281807 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000281807 915__ $$0LIC:(DE-HGF)CCBYNC4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 4.0
000281807 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000281807 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV FUNCT MATER : 2014
000281807 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bADV FUNCT MATER : 2014
000281807 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000281807 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000281807 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000281807 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000281807 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000281807 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000281807 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000281807 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000281807 920__ $$lyes
000281807 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000281807 980__ $$ajournal
000281807 980__ $$aVDB
000281807 980__ $$aUNRESTRICTED
000281807 980__ $$aI:(DE-Juel1)PGI-9-20110106
000281807 9801_ $$aUNRESTRICTED
000281807 9801_ $$aFullTexts