001     281807
005     20210129222013.0
024 7 _ |a 10.1002/adfm.201500848
|2 doi
024 7 _ |a 1057-9257
|2 ISSN
024 7 _ |a 1099-0712
|2 ISSN
024 7 _ |a 1616-301X
|2 ISSN
024 7 _ |a 1616-3028
|2 ISSN
024 7 _ |a 2128/9829
|2 Handle
024 7 _ |a WOS:000363685900011
|2 WOS
037 _ _ |a FZJ-2016-01474
041 _ _ |a English
082 _ _ |a 620
100 1 _ |a Jost, Peter
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Disorder-Induced Localization in Crystalline Pseudo-Binary GeTe-Sb 2 Te 3 Alloys between Ge 3 Sb 2 Te 6 and GeTe
260 _ _ |a Weinheim
|c 2015
|b Wiley-VCH
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1454507429_9286
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a Disorder has a tremendous impact on charge transport in crystalline compounds on the pseudo-binary line between Sb2Te3 and GeTe. Directly after crystallization, the pronounced disorder on the cation sublattice renders crystalline Ge1Sb2Te4—a composition with a carrier density of the order of 1020 cm−3—an Anderson insulator. Annealing, however, induces the reduction of disorder and eventually triggers an insulator-to-metal transition. This study presents data on the electrical properties, the optical conductivity, and structural properties of the pseudo-binary compositions between Ge3Sb2Te6 and GeTe. In contrast to the preceding investigations, which rely on the annealing temperature for tuning the electrical properties, this study elucidates the impact of stoichiometry and demonstrates that the stoichiometry may be employed as an alternative control parameter for the metal-to-insulator transition. The combination of annealing temperature and stoichiometry, therefore, provides a rich playground for tailoring disorder and, as a consequence, the transport of charge.
536 _ _ |a 521 - Controlling Electron Charge-Based Phenomena (POF3-521)
|0 G:(DE-HGF)POF3-521
|c POF3-521
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Volker, Hanno
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Poitz, Annika
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Poltorak, Christian
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Zalden, Peter
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Schäfer, Tobias
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Lange, Felix R. L.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Schmidt, Rüdiger M.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Holländer, Bernhard
|0 P:(DE-Juel1)125595
|b 8
700 1 _ |a Wirtssohn, Matti R.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Wuttig, Matthias
|0 P:(DE-HGF)0
|b 10
|e Corresponding author
773 _ _ |a 10.1002/adfm.201500848
|g Vol. 25, no. 40, p. 6399 - 6406
|0 PERI:(DE-600)2039420-2
|n 40
|p 6399 - 6406
|t Advanced functional materials
|v 25
|y 2015
|x 1616-301X
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/281807/files/Jost_et_al-2015-Advanced_Functional_Materials.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/281807/files/Jost_et_al-2015-Advanced_Functional_Materials.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/281807/files/Jost_et_al-2015-Advanced_Functional_Materials.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/281807/files/Jost_et_al-2015-Advanced_Functional_Materials.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/281807/files/Jost_et_al-2015-Advanced_Functional_Materials.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/281807/files/Jost_et_al-2015-Advanced_Functional_Materials.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:281807
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)125595
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-521
|2 G:(DE-HGF)POF3-500
|v Controlling Electron Charge-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Creative Commons Attribution-NonCommercial CC BY-NC 4.0
|0 LIC:(DE-HGF)CCBYNC4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ADV FUNCT MATER : 2014
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b ADV FUNCT MATER : 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 1 _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21