000281810 001__ 281810
000281810 005__ 20240610120905.0
000281810 0247_ $$2doi$$a10.1016/j.chemgeo.2015.05.002
000281810 0247_ $$2ISSN$$a0009-2541
000281810 0247_ $$2ISSN$$a1872-6836
000281810 0247_ $$2WOS$$aWOS:000358525500005
000281810 0247_ $$2altmetric$$aaltmetric:3993669
000281810 037__ $$aFZJ-2016-01477
000281810 041__ $$aEnglish
000281810 082__ $$a550
000281810 1001_ $$0P:(DE-HGF)0$$aO'Connell, David W.$$b0$$eCorresponding author
000281810 245__ $$aVivianite formation and its role in phosphorus retention in Lake Ørn, Denmark
000281810 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2015
000281810 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1454507881_9286
000281810 3367_ $$2DataCite$$aOutput Types/Journal article
000281810 3367_ $$00$$2EndNote$$aJournal Article
000281810 3367_ $$2BibTeX$$aARTICLE
000281810 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000281810 3367_ $$2DRIVER$$aarticle
000281810 520__ $$aVivianite [(Fe3(PO4)2·8H2O)] may precipitate in anoxic lake sediments affecting the porewater orthophosphate concentration, and thereby the trophic status of lakes. We have investigated changes in lake diagenesis of Fe and P (1969–2009), with particular attention focused on vivianite formation with sediment depth (0–20 cm) in an iron–silica–carbon rich lake sediment (Ørnsø, Denmark). Porewaters were supersaturated for vivianite by two to five orders of magnitude (upper 10 cm) with porewater phosphate concentrations ranging between 0.69 and 10 μmol l− 1, in winter, and summer concentrations ranging between 9.8 and 40 μmol l− 1. Significant formation of vivianite was confirmed by X-ray diffraction while scanning electron microscopy and electron dispersive X-ray spectroscopy indicated an increase in vivianite crystal size with depth (~ 20 to ~ 70 μm across). Variations in elemental composition of vivianite crystals in relation to at.% P and Fe were especially seen going from 9.5 cm to 24.5 cm. The total sediment Fe pool was very large ~ 3000 μmol g− 1 and total P increased from 200 μmol g− 1 to 400 μmol g− 1 descending down the sediment profile. Differential extraction experiments of P release at pH 3 estimated that vivianite amounts to between 3 and 5% of the total Fe pool. The total P burial fluxes estimate that ~ 38 μmol cm− 2 yr− 1 or ~ 26% of sedimentary P in the lower sediments is sequestered as vivianite. There are seasonal variations in the porewater composition with lower Fe, orthophosphate and higher sulfate concentrations during winter (5 °C), than during summer (15 °C). This suggests that temperature modulates the rate of organic matter degradation which in turns affects the rate of Fe(III) phase reduction, release of phosphate, and thereby the porewater Fe2 + and orthophosphate concentrations and hence vivianite formation. This work highlights the role vivianite can play for P retention in a Si–Fe–C rich lake sediment.
000281810 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000281810 588__ $$aDataset connected to CrossRef
000281810 7001_ $$0P:(DE-HGF)0$$aMark Jensen, Marlene$$b1
000281810 7001_ $$0P:(DE-HGF)0$$aJakobsen, Rasmus$$b2
000281810 7001_ $$0P:(DE-HGF)0$$aThamdrup, Bo$$b3
000281810 7001_ $$0P:(DE-HGF)0$$aJoest Andersen, Thorbjørn$$b4
000281810 7001_ $$0P:(DE-Juel1)144926$$aKovacs, Andras$$b5
000281810 7001_ $$0P:(DE-HGF)0$$aBruun Hansen, Hans Christian$$b6
000281810 773__ $$0PERI:(DE-600)1492506-0$$a10.1016/j.chemgeo.2015.05.002$$gVol. 409, p. 42 - 53$$p42 - 53$$tChemical geology$$v409$$x0009-2541$$y2015
000281810 8564_ $$uhttps://juser.fz-juelich.de/record/281810/files/1-s2.0-S0009254115002363-main.pdf$$yRestricted
000281810 8564_ $$uhttps://juser.fz-juelich.de/record/281810/files/1-s2.0-S0009254115002363-main.gif?subformat=icon$$xicon$$yRestricted
000281810 8564_ $$uhttps://juser.fz-juelich.de/record/281810/files/1-s2.0-S0009254115002363-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000281810 8564_ $$uhttps://juser.fz-juelich.de/record/281810/files/1-s2.0-S0009254115002363-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000281810 8564_ $$uhttps://juser.fz-juelich.de/record/281810/files/1-s2.0-S0009254115002363-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000281810 8564_ $$uhttps://juser.fz-juelich.de/record/281810/files/1-s2.0-S0009254115002363-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000281810 909CO $$ooai:juser.fz-juelich.de:281810$$pVDB
000281810 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144926$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000281810 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000281810 9141_ $$y2015
000281810 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000281810 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCHEM GEOL : 2014
000281810 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000281810 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000281810 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000281810 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000281810 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000281810 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000281810 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000281810 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000281810 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000281810 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000281810 920__ $$lyes
000281810 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x0
000281810 980__ $$ajournal
000281810 980__ $$aVDB
000281810 980__ $$aUNRESTRICTED
000281810 980__ $$aI:(DE-Juel1)PGI-5-20110106
000281810 981__ $$aI:(DE-Juel1)ER-C-1-20170209