001     281810
005     20240610120905.0
024 7 _ |a 10.1016/j.chemgeo.2015.05.002
|2 doi
024 7 _ |a 0009-2541
|2 ISSN
024 7 _ |a 1872-6836
|2 ISSN
024 7 _ |a WOS:000358525500005
|2 WOS
024 7 _ |a altmetric:3993669
|2 altmetric
037 _ _ |a FZJ-2016-01477
041 _ _ |a English
082 _ _ |a 550
100 1 _ |a O'Connell, David W.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Vivianite formation and its role in phosphorus retention in Lake Ørn, Denmark
260 _ _ |a New York, NY [u.a.]
|c 2015
|b Elsevier
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1454507881_9286
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a Vivianite [(Fe3(PO4)2·8H2O)] may precipitate in anoxic lake sediments affecting the porewater orthophosphate concentration, and thereby the trophic status of lakes. We have investigated changes in lake diagenesis of Fe and P (1969–2009), with particular attention focused on vivianite formation with sediment depth (0–20 cm) in an iron–silica–carbon rich lake sediment (Ørnsø, Denmark). Porewaters were supersaturated for vivianite by two to five orders of magnitude (upper 10 cm) with porewater phosphate concentrations ranging between 0.69 and 10 μmol l− 1, in winter, and summer concentrations ranging between 9.8 and 40 μmol l− 1. Significant formation of vivianite was confirmed by X-ray diffraction while scanning electron microscopy and electron dispersive X-ray spectroscopy indicated an increase in vivianite crystal size with depth (~ 20 to ~ 70 μm across). Variations in elemental composition of vivianite crystals in relation to at.% P and Fe were especially seen going from 9.5 cm to 24.5 cm. The total sediment Fe pool was very large ~ 3000 μmol g− 1 and total P increased from 200 μmol g− 1 to 400 μmol g− 1 descending down the sediment profile. Differential extraction experiments of P release at pH 3 estimated that vivianite amounts to between 3 and 5% of the total Fe pool. The total P burial fluxes estimate that ~ 38 μmol cm− 2 yr− 1 or ~ 26% of sedimentary P in the lower sediments is sequestered as vivianite. There are seasonal variations in the porewater composition with lower Fe, orthophosphate and higher sulfate concentrations during winter (5 °C), than during summer (15 °C). This suggests that temperature modulates the rate of organic matter degradation which in turns affects the rate of Fe(III) phase reduction, release of phosphate, and thereby the porewater Fe2 + and orthophosphate concentrations and hence vivianite formation. This work highlights the role vivianite can play for P retention in a Si–Fe–C rich lake sediment.
536 _ _ |a 143 - Controlling Configuration-Based Phenomena (POF3-143)
|0 G:(DE-HGF)POF3-143
|c POF3-143
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Mark Jensen, Marlene
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Jakobsen, Rasmus
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Thamdrup, Bo
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Joest Andersen, Thorbjørn
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Kovacs, Andras
|0 P:(DE-Juel1)144926
|b 5
700 1 _ |a Bruun Hansen, Hans Christian
|0 P:(DE-HGF)0
|b 6
773 _ _ |a 10.1016/j.chemgeo.2015.05.002
|g Vol. 409, p. 42 - 53
|0 PERI:(DE-600)1492506-0
|p 42 - 53
|t Chemical geology
|v 409
|y 2015
|x 0009-2541
856 4 _ |u https://juser.fz-juelich.de/record/281810/files/1-s2.0-S0009254115002363-main.pdf
|y Restricted
856 4 _ |x icon
|u https://juser.fz-juelich.de/record/281810/files/1-s2.0-S0009254115002363-main.gif?subformat=icon
|y Restricted
856 4 _ |x icon-1440
|u https://juser.fz-juelich.de/record/281810/files/1-s2.0-S0009254115002363-main.jpg?subformat=icon-1440
|y Restricted
856 4 _ |x icon-180
|u https://juser.fz-juelich.de/record/281810/files/1-s2.0-S0009254115002363-main.jpg?subformat=icon-180
|y Restricted
856 4 _ |x icon-640
|u https://juser.fz-juelich.de/record/281810/files/1-s2.0-S0009254115002363-main.jpg?subformat=icon-640
|y Restricted
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/281810/files/1-s2.0-S0009254115002363-main.pdf?subformat=pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:281810
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)144926
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-143
|2 G:(DE-HGF)POF3-100
|v Controlling Configuration-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CHEM GEOL : 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a No Authors Fulltext
|0 StatID:(DE-HGF)0550
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-5-20110106
|k PGI-5
|l Mikrostrukturforschung
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-5-20110106
981 _ _ |a I:(DE-Juel1)ER-C-1-20170209


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21