000281812 001__ 281812
000281812 005__ 20240610120907.0
000281812 0247_ $$2doi$$a10.1111/maps.12471
000281812 0247_ $$2ISSN$$a0026-1114
000281812 0247_ $$2ISSN$$a1086-9379
000281812 0247_ $$2ISSN$$a1945-5100
000281812 0247_ $$2Handle$$a2128/9830
000281812 0247_ $$2WOS$$aWOS:000359356900003
000281812 0247_ $$2altmetric$$aaltmetric:4251675
000281812 037__ $$aFZJ-2016-01479
000281812 041__ $$aEnglish
000281812 082__ $$a520
000281812 1001_ $$0P:(DE-HGF)0$$aLee, M. R.$$b0$$eCorresponding author
000281812 245__ $$aOpal-A in the Nakhla meteorite: A tracer of ephemeral liquid water in the Amazonian crust of Mars
000281812 260__ $$aHoboken, NJ$$bWiley-Blackwell$$c2015
000281812 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1454508062_9282
000281812 3367_ $$2DataCite$$aOutput Types/Journal article
000281812 3367_ $$00$$2EndNote$$aJournal Article
000281812 3367_ $$2BibTeX$$aARTICLE
000281812 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000281812 3367_ $$2DRIVER$$aarticle
000281812 520__ $$aThe nakhlite meteorites are clinopyroxenites that are derived from a ~1300 million year old sill or lava flow on Mars. Most members of the group contain veins of iddingsite whose main component is a fine-grained and hydrous Fe- and Mg-rich silicate. Siderite is present in the majority of veins, where it straddles or cross-cuts the Fe-Mg silicate. This carbonate also contains patches of ferric (oxy)hydroxide. Despite 40 years of investigation, the mineralogy and origins of the Fe-Mg silicate is poorly understood, as is the paragenesis of the iddingsite veins. Nanometer-scale analysis of Fe-Mg silicate in the Nakhla meteorite by electron and X-ray imaging and spectroscopy reveals that its principal constituents are nanoparticles of opal-A. This hydrous and amorphous phase precipitated from acidic solutions that had become supersaturated with respect to silica by dissolution of olivine. Each opal-A nanoparticle is enclosed within a ferrihydrite shell that formed by oxidation of iron that had also been liberated from the olivine. Siderite crystallized subsequently and from solutions that were alkaline and reducing, and replaced both the nanoparticles and olivine. The fluids that formed both the opal-A/ferrihydrite and the siderite were sourced from one or more reservoirs in contact with the Martian atmosphere. The last event recorded by the veins was alteration of the carbonate to a ferric (oxy)hydroxide that probably took place on Mars, although a terrestrial origin remains possible. These results support findings from orbiter- and rover-based spectroscopy that opaline silica was a common product of aqueous alteration of the Martian crust.
000281812 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000281812 588__ $$aDataset connected to CrossRef
000281812 7001_ $$0P:(DE-HGF)0$$aMacLaren, I.$$b1
000281812 7001_ $$0P:(DE-HGF)0$$aAndersson, S. M. L.$$b2
000281812 7001_ $$0P:(DE-Juel1)169153$$aKovács, A.$$b3
000281812 7001_ $$0P:(DE-HGF)0$$aTomkinson, T.$$b4
000281812 7001_ $$0P:(DE-HGF)0$$aMark, D. F.$$b5
000281812 7001_ $$0P:(DE-HGF)0$$aSmith, C. L.$$b6
000281812 773__ $$0PERI:(DE-600)2011097-2$$a10.1111/maps.12471$$gVol. 50, no. 8, p. 1362 - 1377$$n8$$p1362 - 1377$$tMeteoritics & planetary science$$v50$$x1086-9379$$y2015
000281812 8564_ $$uhttps://juser.fz-juelich.de/record/281812/files/Lee_et_al-2015-Meteoritics_%26_Planetary_Science.pdf$$yOpenAccess
000281812 8564_ $$uhttps://juser.fz-juelich.de/record/281812/files/Lee_et_al-2015-Meteoritics_%26_Planetary_Science.gif?subformat=icon$$xicon$$yOpenAccess
000281812 8564_ $$uhttps://juser.fz-juelich.de/record/281812/files/Lee_et_al-2015-Meteoritics_%26_Planetary_Science.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000281812 8564_ $$uhttps://juser.fz-juelich.de/record/281812/files/Lee_et_al-2015-Meteoritics_%26_Planetary_Science.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000281812 8564_ $$uhttps://juser.fz-juelich.de/record/281812/files/Lee_et_al-2015-Meteoritics_%26_Planetary_Science.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000281812 8564_ $$uhttps://juser.fz-juelich.de/record/281812/files/Lee_et_al-2015-Meteoritics_%26_Planetary_Science.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000281812 909CO $$ooai:juser.fz-juelich.de:281812$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000281812 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169153$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000281812 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000281812 9141_ $$y2015
000281812 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000281812 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000281812 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMETEORIT PLANET SCI : 2014
000281812 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000281812 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000281812 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000281812 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000281812 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000281812 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000281812 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000281812 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000281812 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000281812 920__ $$lyes
000281812 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x0
000281812 9801_ $$aUNRESTRICTED
000281812 9801_ $$aFullTexts
000281812 980__ $$ajournal
000281812 980__ $$aVDB
000281812 980__ $$aUNRESTRICTED
000281812 980__ $$aI:(DE-Juel1)PGI-5-20110106
000281812 981__ $$aI:(DE-Juel1)ER-C-1-20170209