%0 Conference Paper
%A Aseeri, Samar
%A Batrašev, Oleg
%A Icardi, Matteo
%A Leu, Brian
%A Liu, Albert
%A Li, Ning
%A Muite, Benson
%A Müller, Eike
%A Palen, Brock
%A Quell, Michael
%A Servat, Harald
%A Sheth, Parth
%A Speck, Robert
%A Van Moer, Mark
%A Vienne, Jerome
%T Solving the Klein-Gordon equation using fourier spectral methods: a benchmark test for computer performance
%C San Diego, CA, USA
%I Society for Computer Simulation International
%M FZJ-2016-01506
%P 182-191
%D 2015
%< Proceedings of the Symposium on High Performance Computing HPC'15; ISBN 978-1-5108-0101-1
%X The cubic Klein-Gordon equation is a simple but non-trivial partial differential equation whose numerical solution has the main building blocks required for the solution of many other partial differential equations. In this study, the library 2DECOMP&FFT is used in a Fourier spectral scheme to solve the Klein-Gordon equation and strong scaling of the code is examined on thirteen different machines for a problem size of 5123. The results are useful in assessing likely performance of other parallel fast Fourier transform based programs for solving partial differential equations. The problem is chosen to be large enough to solve on a workstation, yet also of interest to solve quickly on a supercomputer, in particular for parametric studies. Unlike the Linpack benchmark, a high ranking will not be obtained by simply building a bigger computer.
%B 23rd High Performance Computing Symposium
%C 12 Apr 2015 - 15 Apr 2015, Alexandria (USA)
Y2 12 Apr 2015 - 15 Apr 2015
M2 Alexandria, USA
%F PUB:(DE-HGF)8
%9 Contribution to a conference proceedings
%U https://juser.fz-juelich.de/record/281839