000281839 001__ 281839
000281839 005__ 20210129222029.0
000281839 037__ $$aFZJ-2016-01506
000281839 041__ $$aEnglish
000281839 1001_ $$0P:(DE-HGF)0$$aAseeri, Samar$$b0$$eCorresponding author
000281839 1112_ $$a23rd High Performance Computing Symposium$$cAlexandria$$d2015-04-12 - 2015-04-15$$gHPC2015$$wUSA
000281839 245__ $$aSolving the Klein-Gordon equation using fourier spectral methods: a benchmark test for computer performance
000281839 260__ $$aSan Diego, CA, USA$$bSociety for Computer Simulation International$$c2015
000281839 29510 $$aProceedings of the Symposium on High Performance Computing HPC'15; ISBN 978-1-5108-0101-1
000281839 300__ $$a182-191
000281839 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1454509565_9277
000281839 3367_ $$033$$2EndNote$$aConference Paper
000281839 3367_ $$2ORCID$$aCONFERENCE_PAPER
000281839 3367_ $$2DataCite$$aOutput Types/Conference Paper
000281839 3367_ $$2DRIVER$$aconferenceObject
000281839 3367_ $$2BibTeX$$aINPROCEEDINGS
000281839 520__ $$aThe cubic Klein-Gordon equation is a simple but non-trivial partial differential equation whose numerical solution has the main building blocks required for the solution of many other partial differential equations. In this study, the library 2DECOMP&FFT is used in a Fourier spectral scheme to solve the Klein-Gordon equation and strong scaling of the code is examined on thirteen different machines for a problem size of 5123. The results are useful in assessing likely performance of other parallel fast Fourier transform based programs for solving partial differential equations. The problem is chosen to be large enough to solve on a workstation, yet also of interest to solve quickly on a supercomputer, in particular for parametric studies. Unlike the Linpack benchmark, a high ranking will not be obtained by simply building a bigger computer.
000281839 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000281839 7001_ $$0P:(DE-HGF)0$$aBatrašev, Oleg$$b1
000281839 7001_ $$0P:(DE-HGF)0$$aIcardi, Matteo$$b2
000281839 7001_ $$0P:(DE-HGF)0$$aLeu, Brian$$b3
000281839 7001_ $$0P:(DE-HGF)0$$aLiu, Albert$$b4
000281839 7001_ $$0P:(DE-HGF)0$$aLi, Ning$$b5
000281839 7001_ $$0P:(DE-HGF)0$$aMuite, Benson$$b6
000281839 7001_ $$0P:(DE-HGF)0$$aMüller, Eike$$b7
000281839 7001_ $$0P:(DE-HGF)0$$aPalen, Brock$$b8
000281839 7001_ $$0P:(DE-HGF)0$$aQuell, Michael$$b9
000281839 7001_ $$0P:(DE-HGF)0$$aServat, Harald$$b10
000281839 7001_ $$0P:(DE-HGF)0$$aSheth, Parth$$b11
000281839 7001_ $$0P:(DE-Juel1)132268$$aSpeck, Robert$$b12$$ufzj
000281839 7001_ $$0P:(DE-HGF)0$$aVan Moer, Mark$$b13
000281839 7001_ $$0P:(DE-HGF)0$$aVienne, Jerome$$b14
000281839 8564_ $$uhttp://dl.acm.org/citation.cfm?id=2872622&CFID=746253083&CFTOKEN=98154986
000281839 909CO $$ooai:juser.fz-juelich.de:281839$$pVDB
000281839 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132268$$aForschungszentrum Jülich GmbH$$b12$$kFZJ
000281839 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000281839 9141_ $$y2015
000281839 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000281839 920__ $$lyes
000281839 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000281839 980__ $$acontrib
000281839 980__ $$aVDB
000281839 980__ $$aUNRESTRICTED
000281839 980__ $$aI:(DE-Juel1)JSC-20090406