001     281839
005     20210129222029.0
037 _ _ |a FZJ-2016-01506
041 _ _ |a English
100 1 _ |a Aseeri, Samar
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
111 2 _ |a 23rd High Performance Computing Symposium
|g HPC2015
|c Alexandria
|d 2015-04-12 - 2015-04-15
|w USA
245 _ _ |a Solving the Klein-Gordon equation using fourier spectral methods: a benchmark test for computer performance
260 _ _ |a San Diego, CA, USA
|c 2015
|b Society for Computer Simulation International
295 1 0 |a Proceedings of the Symposium on High Performance Computing HPC'15; ISBN 978-1-5108-0101-1
300 _ _ |a 182-191
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1454509565_9277
|2 PUB:(DE-HGF)
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a INPROCEEDINGS
|2 BibTeX
520 _ _ |a The cubic Klein-Gordon equation is a simple but non-trivial partial differential equation whose numerical solution has the main building blocks required for the solution of many other partial differential equations. In this study, the library 2DECOMP&FFT is used in a Fourier spectral scheme to solve the Klein-Gordon equation and strong scaling of the code is examined on thirteen different machines for a problem size of 5123. The results are useful in assessing likely performance of other parallel fast Fourier transform based programs for solving partial differential equations. The problem is chosen to be large enough to solve on a workstation, yet also of interest to solve quickly on a supercomputer, in particular for parametric studies. Unlike the Linpack benchmark, a high ranking will not be obtained by simply building a bigger computer.
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|f POF III
|x 0
700 1 _ |a Batrašev, Oleg
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Icardi, Matteo
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Leu, Brian
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Liu, Albert
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Li, Ning
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Muite, Benson
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Müller, Eike
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Palen, Brock
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Quell, Michael
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Servat, Harald
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Sheth, Parth
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Speck, Robert
|0 P:(DE-Juel1)132268
|b 12
|u fzj
700 1 _ |a Van Moer, Mark
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Vienne, Jerome
|0 P:(DE-HGF)0
|b 14
856 4 _ |u http://dl.acm.org/citation.cfm?id=2872622&CFID=746253083&CFTOKEN=98154986
909 C O |o oai:juser.fz-juelich.de:281839
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)132268
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2015
915 _ _ |a No Authors Fulltext
|0 StatID:(DE-HGF)0550
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21