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Abstract. Calculations on D-Wave machines are presented, both for the 500-qubit and the
1000-qubit machines. Results are presented for spanning trees on the available K44 Chimera
graphs of both machines. Comparing trees of approximately the same size, the frequency of
finding the ground state for the 1000-qubit machine is significantly improved over the 500-
qubit older generation machine. Spanning trees are difficult problems for solution by adiabatic
quantum computers, so the enhanced frequency of finding the ground state for newer machine
generations and larger machines is encouraging for this immature technology.

1. Introduction

The availability of an Adiabatic Quantum Computer (AQC) with thousands of qubits would be
a disruptive technology. In complexity theory the class P stands for polynomial time problems
and NP for non-deterministic polynomial time problems [1]. We assume, although no proof is
known, that P#£NP. The reason AQC would be a disruptive technology is that in theory an AQC
would enable solutions to problems that belong to the complexity class NP-hard, whereas all
classical computers allow solutions to problems of the complexity class P. In theory any NP-hard
problem can be reduced in polynomial time to a chosen NP-hard problem. Therefore, a machine
that can solve any particular NP-hard problem would be a disruptive technology.

The goal of an AQC is to solve one particular NP-hard problem, namely finding the ground
state of an Ising spin glass. The AQC operates at a low temperature, but the functionality
of an AQC is easiest understood by considering the zero-temperature dynamics of the qubit
system that makes up the AQC. A bit can be represented as a vector of length two, with the
binary variable 0 represented as the vector (0 1) and the binary variable 1 represented as the
vector (10). A qubit can be represented as a vector of length two of the form (a; as) with the
normalization aja; + ajaz = 1 where the a; are in general complex numbers. In other words,
a qubit is a superposition of the two classical binary bit values 0 and 1. An AQC works by
initializing the vector of all N qubits as a direct product of the ground state of a Hamiltonian
'H, of the Pauli matrix o®. The goal is to find the ground state of the Ising spin glass Hamiltonian
H., a function of the Pauli matrix o®. The Hamiltonian Hy=AH,+(1 — \) H, is adiabatically
adjusted by changing the variable A with time. At time ¢=0 one starts with A=1, and at the
end of the annealing cycle one has A=0. After the annealing cycle the vector is measured to
provide a ground state of H.,.
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Published under licence by IOP Publishing Ltd 1



International Conference on Computer Simulation in Physics and Beyond 2015 IOP Publishing
Journal of Physics: Conference Series 681 (2016) 012005 doi:10.1088/1742-6596/681/1/012005

Figure 1. An L =2 K, 4 Chimera graph G is shown. The graph G is represented as a bi-layer
system, with blue nodes in the bottom layer and green nodes in the top layer. Each complete
K4 4 unit cell has four green nodes and four blue notes, with every blue node connected to every
green node. Also shown are three stages of the construction of a spanning tree on G. The initial
graph with the chosen tree root (red), the tree with seven of the of the 27 sites occupied by the
growing tree, and the spanning tree with all 27 sites occupied.

Obtaining the ground state of an Ising spin glass is an NP-hard problem. Consider a
connected undirected graph G with N vertices (nodes) with an Ising variable s; = £1 placed on
each vertex. The ground state of the Ising spin glass is the state {s} of Ising spins on G that
minimizes the energy function [2]

N—-1 N N
F=— Z Z Ji,jsisj — Z hij (1)
Jj=1

i=1 j=it1

for fixed bias fields h; and fixed bond weights J; ;. If there is no edge in G connecting vertices 4
and j then J; j=0. The J; ; and h; are the parameters in the Hamiltonian H.. If all bonds are
ferromagnetic, J; ; > 0, and all bias fields are zero, the ground state is degenerate, as both the
state with all s; = +1 and the state with all s; = —1 have the same energy. An Ising spin glass
requires that there is frustration in the model, in other words that it is not possible to place all
spins on G in such a fashion that every term in the sums in Eq. (1) is positive.

If P#NP, then in the worst-case instance the solution of an NP-problem requires an exhaustive
search of all possible states. For the Ising spin glass an exhaustive search requires calculating the
energy in Eq. (1) 2V times. This can be easily programmed in parallel for a Single-Instruction-
Multiple-Data (SIMD) classical computer. The steps of the SIMD algorithm, assuming oN
processors, are:

e Broadcast the same J; ; bond weights and h; bias fields to each processor

e Scatter one configuration of the Ising variables s; to each processor

e Each processor calculates the energy of Eq. (1) for its configuration of the Ising variables
e Gather the energies from each processor, and keep only the configuration(s) with the lowest

energies.

The comparison (last) step can be performed with the order of the number of operations O (N).
Therefore the number of computations required is given by the rate limiting step, the third
step. The number of calculations which should be performed is O (N 29N ), since each energy

calculation requires O (N?) computations.
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Figure 2. Configuration of the D-Wave 2X used to study spanning trees on 1000+ qubits. [Left]
Each square is a Ky 4 unit cell of eight qubits. The chip is a 12x12 square array of unit cells
(with free boundary conditions). The colors correspond to the number of functioning qubits in
the unit cell: black=8, gray=7, pink=6, and yellow=>5. [Right] The D-Wave 2X graph for the
K, 4 Chimera graph G used in this study, shown as a bilayer system. The blue qubits are in the
bottom layer and the green qubits in the top layer. The chip has 1097 available qubits (1097
vertices in G). The qubit labeled as zero on the D-Wave 2X is shown in red (top left).

The company D-Wave, Inc [3] recently announced a 1000-qubit machine [4]. The reason the
SIMD algorithm above cannot be used in principle is that 2190 ~ 103%!, while the estimated
number of particles in the visible universe is ‘only’ about 10%. Clearly the SIMD algorithm is
impracticle for 1000 vertices in G. An ideal AQC can perform all 2V calculations of the energy
in parallel because of principles of quantum mechanics, in particular coherence, superposition,
and tunneling [5]. Quantum mechanics is probabilistic, and hence any AQC is a probabilistic
machine. An ideal AQC is possible only in the unphysical limits of the machine operating at
zero degrees Kelvin (absolute zero) and taking an infinite time to perform the required adiabatic
calculation. Therefore the question that needs to be addressed for any practical AQC is whether
it provides groundstates with a high enough frequency of occurrence that it is useful to calculate
NP-hard problems.

This conference proceedings article, based on a Sept. 9, 2015 plenary talk at the International
Conference on Computer Simulation in Physics and beyond in Moscow, Russia, seeks to address
the practical question of applicability of D-Wave machines. The results of that talk, as well as
of this paper, include only preliminary results for the 1000 qubit D-Wave 2X machine due to
the short amount of time the machine has been available. Nevertheless, even the preliminary
results can shed light on the functionality of the D-Wave 2X.

The approach we have taken to test the D-Wave machines is to use spanning trees on the D-
Wave graph G. Section 2 details the graph G of the D-Wave machines. Section 3 presents results
of placing ferromagnetic bonds on the 1000 qubit D-Wave 2X. Section 4 describes spanning
trees on D-Wave machines. Results of solving spanning tree problems on D-Wave machines are
presented in Section 5 for ferromagnetic bonds and in Section 6 for random +1 bonds. Section 7
contains a discussion, outlook, and conclusions.
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2. D-Wave Machines

The architecture of the D-Wave chip is an LxL K44 Chimera lattice [3, 4]. The number of
qubits on the chip is N = 8L2. The Chimera lattice can be represented as a bilayer system,
as shown in Fig. 1 for an L=2 lattice. Some of the qubits on a chip are not accessible to the
programmer, so the K44 Chimera lattice has disorder, just as depicted in Fig. 1.

In Fig. 1 the graph G is taken to be a K44 Chimera lattice, composed of a 2x2 arrangement
of unit cells. The graph is represented as a bilayer system. Each unit cell has four vertices in
the top layer (green vertices) and four vertices in the bottom layer (blue vertices). In each unit
cell the top four vertices are each connected (brown edges) to every one of the four vertices in
the bottom layer. The vertices in the bottom layer are connected (blue edges) to corresponding
bottom layer vertices in nearest neighbor unit cells. Similary, the vertices in the top layer are
connected (gray edges) to corresponding top layer vertices in nearest neighbor unit cells. The
graph G in Fig. 1 has disorder, as only 27 of the possible 228=32 vertices are present. If a vertex
from the full K4 Chimera lattice is missing, all of its associated edges are also missing in G.
The D-Wave machines have the same K4 4 structure as in Fig. 1, but are on an 8x8 arrangement
of unit cells for the 500 qubit machine (the total number of qubits is 83=512) and on a 12x12
arrangement of unit cells for the 1000 qubit machine (the total number of qubits is 1228=1152).

Results from three different D-Wave chips will be reported. Two of the chips are last
generation 512 qubit chips. The number of functioning qubits is 496 of one chip [7] and of
the other is 476 qubits. Both chips were operated at the company headquarters in Burnaby;,
British Columbia, Canada, and were so-called in-house ‘test’ chips. The 1152 qubit D-Wave 2X
chip actually had 1097 accessible qubits. This computer is located at the Ames Research Center
located at Moffett Field in California, USA. The D-Wave machine is managed by a collaboration
of NASA (National Aeronautics and Space Administration) [8], USRA (Universities Space
Research Association) [9], and Google [10].

The configuration of the 1000 qubit D-Wave 2X is shown in Fig. 2. Of the L? = 144 Ky4
unit cells, 109 have all eight qubits available. The details of the number of available qubits in
the unit cells are in Table 1. Any qubit j which is not available results in all the J; ; connections
not available. In addition, there is one unavailable J; ; connection between two available qubits.
This makes that there are 3060 bonds available from the 3360 bonds in an undisordered 122K474
Chimera lattice. The bilayer representation of the graph of the 1097 qubit machine is shown in
Fig. 2. In Fig. 2(Right) the qubit in red (top left) marks the qubit that is assigned to be qubit
number zero. The D-Wave 2X is an analog machine, and has a 3% analog control error on the
hj and the Ji7j-

Total qubits in a unit cell 8| 7] 615
144 109 | 18 | 14 | 3

Table 1. The number of available qubits in each unit cell of the 1000 qubit D-Wave 2X.

3. Ferromagnetic Computations on a 1000 Qubit D-Wave Machine

The first test we performed on the 1097 qubit D-Wave 2X was to place J; j=1 on all available
bonds, resulting in overall ferromagnetic bonds and to put the same bias fields h; on each qubit.
One thousand anneals were performed for each value of h; (set to be uniform). All anneals
found the expected ground state, each having the energy E=-3060. For zero field the two
ground states with all s;=+1 and s;=—1 should be found equally often. However, as shown in
Table 2 only one of the two ground states was found. By gradually changing the uniform value
of the bias field h; on each qubit, for the bias field h;=0.07 both ground states were found. For
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the D-Wave 2X there is a 3% analog control error, so quantitatively the results in Table 2 are
reasonable.

\ h; 0.00 | 0.06 | 0.07 | 0.08
s;=—1 ] 1000 | 1000 | 823 0
sj=+1 0 0| 177 | 1000

Table 2. The number of times each of the two ground states were found for different applied
fields h; for ferromagnetic J; ;=1 bonds.

4. Spanning Trees
A tree is a graph with no loops. A spanning tree of G is a subgraph of G that has a tree structure
and that includes all N vertices of G. We have generated our spanning trees using an algorithm
of A. Broder [6]. The algorithm has an expected run time of O (NlogN) for almost all graphs,
and a run time per generated tree of O (N?3) for the worst graphs. Three steps during a run of
the algorithm are sketched in Fig. 1.

The algorithm to find a spanning tree is

e Choose one vertex of G uniformly at random. In Fig. 1(left) the chosen vertex is red. Let
this vertex be labeled by j.

e Repeat the steps below until all NV vertices belong to the tree:

— Pick an edge uniformly at random that leaves the vertex j

— Walk along the chosen edge to a vertex labeled as k

— If this is the first time vertex k has been visited, add vertex k and the edge j, k to the
growing tree. In Fig. 1(center) this is shown by coloring the vertices and edges red.

— Change the label j to the label &k, whether or not the vertex k was visited for the first
time.

In other words, a random walk starting at any vertex is generated, and the first time a vertex
is visited it is added to the tree and the edge that led to this first visit of the vertex is added
to the tree. The algorithm stops when all vertices belong to the tree [see Fig. 1(right)]. Any
spanning tree has N—1 edges. The spanning trees generated by this algorithm, for example the
spanning tree in Fig. 1, are those drawn uniformly from the distribution of all spanning trees of
G [6].

One way to test an AQC machine is to give problems to the machine for which one knows the
answer. This strategy has been followed by others in terms of chains of qubits [11] or frustrated
optimization problems with tunable hardness [12]. The spanning tree planted graphs have the
advantage that:

e All vertices are included in every spanning tree.
e The ensemble of spanning trees covers all edges.
e The ensemble of spanning trees is well defined.

e Spanning trees exist for any connected graph G.

e The ground state for a spanning tree is known. For example, if all h;=0 and all J; j==+1 in
the tree, then the ground state energy is the negative of one less than the number of edges
in the spanning tree, £ = —N + 1.

e The spin arrangement of the ground state of the spanning tree is easy to calculate.

e Obtaining a ground state for a spanning tree problem is a difficult problem for an AQC.
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[

Figure 3. Two solutions of a ferromagnetic spanning tree on the 476 qubit D-Wave 2. The
8 x 8 arrangment of unit cells are represented with all qubits in a single plane, with blue qubits
+1 and red qubits —1. All available bonds have non-zero weight J; j=1, and only these bonds
are drawn (black lines and curves). The ground state should have all qubits in the same state
(all qubits should be either blue or all should be red). In order to bias which ground state has
the minimum energy, a non-zero bias field hys0=—1 was placed on qubit number 452 (at the
bottom-left), while all other bias fields were zero. This bias should have forced all qubits to be
sj=—1 (red). This is not true for either solution of this spanning tree.

Some results for spanning trees on a 500 qubit D-Wave machine have recently been reported [7].
There are two disadvantages of using spanning trees to test AQC machines. The trees do not
contain any loops, and hence there is no frustration in the model, in other words the problem
is in P not NP. The NP-hard problems that an AQC should solve contain P problems like the
spanning tree, but they are designed to provide answers to the NP-hard problem of finding the
ground state of the Ising spin glass. Nevertheless, the spanning trees give a feeling for how much
to trust the answers obtained from an AQC.

5. Ferromagnetic Spanning Trees on D-Wave Machines

On the 476 chip we placed one spanning tree. Figure 3 shows the spanning tree on the 476 qubit
chip, here represented with all qubits in a single plane. The 8 x 8 arrangement of unit cells
is shown, with only bonds in the spanning tree shown. Note that the spanning tree graph as
represented here is not drawn in a planar fashion, even though any spanning tree can be drawn
as a planar graph with non-crossing bonds. The K44 Chimera graph is shown in a way the
D-Wave 2 presents the qubits on the web interface. All bonds were ferromagnetic, J; j=+1.

We examined the number of times each energy F was found following the anneal cycle. All
bias fields were set to zero. A total of 103 submissions, each with 10 anneals, was performed.
The ground state, with energy Ey=—475, was only found 237 times out of the 10% anneals.
Fig. 4 shows the occurrence of each energy for this particular spanning tree.

Since all bias fields were set to zero, the ferromagnetic tree for the 476 qubit chip should
find the two ground states the same number of times. In that case the magnetization averaged
over all anneals should be (m;)=0. Alternatively if only one state should be found, as in the
ferromagnetic case of Sec. 4, then for the ground state all qubits should have the same (m;). For
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Figure 4. Occurrence in % of the energy found for a 476 qubit D-Wave 2 for a ferromagnetic
spanning tree. The tree was submitted 103 times each with 10? anneals. The ground state has
an energy Fys = —475 and has a relative occurrence frequency of 0.02%.

the 476 qubit machine, as seen in Fig. 5, neither of these assumptions are true. The behavior
of (m;) may be understood as follows. The analog nature of the D-Wave machine may leave
a non-zero field h; on each qubit even when the h; value has been set to zero. This slightly
different from zero field for each qubit is sufficient to decrease the number of times the ground
state is found.

In order to have a non-degenerate ground state, we set all bias fields to h; = 0, except for
qubit number 452, which was set to hys5=—1. The bias field should have enabled the D-Wave 2
to find the ground state with all s;=—1 (red in Fig. 3). For this chip and spanning tree, not
even the qubit number 452 was forced to be in the s;=—1 (red) state. Neither the ground state
energy ([g=—476) nor the first excited state was returned by the D-Wave machine. Fig. 3 shows
two representative returned low-energy configurations, both of a second excited state (energy
Es=—472). Fig. 3 shows that this chip seems to be inhomogeneous, since hys0=—1 did not bias
it to find the non-degenerate ground state. This chip may not have been fine tuned, because it
was an in-house ‘test’ chip.

The analog nature of the D-Wave 2 presents certain issues in terms of programming the
machine. One question one could ask is whether setting bonds to zero disconnects the two
qubits. Because of the 3% analog setting, the degree of isolation should be tested. We have
considered the 476 qubit chip to be four L=4 K, 4 Chimera lattices. A missing qubit on any
L=4 Chimera quadrant was replicated by setting the J; =0, leading to four identical graphs
Gr—4 on each quadrant. The same ferromagnetic spanning tree was placed on each quadrant.
As seen in Fig. 6 each quadrant was found to obtain the ground state a different fraction of
time. The success frequency of each quadrant was labeled as Py, P», P53, and P;. Assuming the
success frequency of finding the ground state in each quadrant was independent of the ground
state found in the other quadrants, the frequency of simultaneously finding the ground state in
quadrants 1 and 4 would be

Py=PP. (2)

Similarly for any two quadrants. Fig. 6 shows results for Py o, P13, P14, P23, P> 4, and P34. The
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Figure 5. The average magnetization (m;) for a 476 qubit D-Wave 2 for a ferromagnetic
spanning tree. The tree was submitted 10® times each with 10 anneals. For a system with no
bias, the average magnetization should be zero.

measured frequency of success (red bars in Fig. 6) correspond within the measurement errors to
the predicted results. Similarly for simultaneously finding the ground state in three quadrants,
labeled Pj o3, Pio4, P34, and Py34. The frequency of simultaneously finding the ground state
in all four quadrants is P;934. If the probability of finding a ground state in each quadrant is
independent, P934 = Py P,P3P,. Fig. 6 compares the measured frequencies (red bars) to the
expected probabilities obtained by multiplying the frequency of finding the ground state in each
quadrant (right yellow bars). The conclusion is that within the measurement errors the ground
state in each quadrant is found to be independent of what is occuring in the other quadrants.

6. Spanning Tree Computations with £1 Bonds on D-Wave Machines
We performed spanning tree calculations on LxL K4 Chimera subgraphs of two different
chips, the one with 496 qubits and the one with 1097 qubits. The bond weights were uniformly
randomly chosen to be .J; j=41. All magnetic fields h; were set to zero. The LxL subgraphs
were chosen to all include the K44 unit cell in the upper-left corner of the chip. This choice
is similar to the gauge transformations used by others [13] to remove local biases on the chip.
Results for the 496 qubit machine were published previously [7]. We submitted a number of
spanning trees for each L, and each submission requested 10® ground states (10% anneal cycles
for the given tree and J;; values). Each tree was submitted with different J; ; values up to
10% times. The probability the D-Wave 2 returned the ground state, Dgs, Was estimated by the
frequency of occurrence of success from all anneals. Results are shown in Table 3 and Fig. 7.
The D-Wave machine can be modeled to a first approximation as an uncorrelated
probabalistic machine. Let the random variaible be X =1 if the ground state solution is returned
in a particular anneal and X=0 otherwise. The expectation value for X is

E(X) = 1'pgs+0'(1_17g8) = Pgs - (3)



International Conference on Computer Simulation in Physics and Beyond 2015 IOP Publishing
Journal of Physics: Conference Series 681 (2016) 012005 doi:10.1088/1742-6596/681/1/012005

100

N o2} ®

o S S
T
H

Frequency (in %)

N
o

P1234P123 P124 P134 P234 P12 P13 P14 F‘23 P24 P34 P1 F)2 P3 F’4

Regions

Figure 6. Results on the 476 qubit D-Wave 2. The success frequencies of finding the
ground state for each Gr—4 quadrant is labeled as P; through Py (yellow bars on right). The
success frequency of simultaneously finding the ground state in two quadrants m and m’ is
labeled as P, ;v (red middle bars) and should be equal to P,,, ,,y =P, P, (the prediction of the
superimposed yellow bars) if the solution frequencies are independent of each other. Similarly
for simultaneously finding the ground state for three quadrants, and for all four quadrants (red
left bar labeled Pja3y).

Similarly, £ (X?) = pgs. Therefore the standard deviation o is
0’ = £(X*) ~[E(X) = por (1~ pas) - 4)

The standard error from the mean is thus estimated to be o/v/M — 1 when there are M samples.
The number of anneals are not uniform for the 496 qubit chip due to program or chip or network
issues. There are two ways of deciding on the value of M. One way would be to use M=M_neal
to be all anneal requests for a given L. The other way would be to use M =Mj;c., the number
of different spanning trees submitted for each L. The error estimate with M =Mji;e., with each
tree submitted with up to 10% different J; ;=41 and each submitted for 10> anneal cycles, is
shown in Fig. 7 and listed in Table 3.

Two striking results are present in Fig. 7 and Table 3. The first is that the 8x8 K} 4 Chimera
lattice results are very different for the 496 qubit D-Wave 2 and the 1097 qubit D-Wave 2X. A
marked improvement in the success frequency of finding the groundstate, pys, is obtained for the
newer generation machine. Some of these differences may be due to the smaller errors in setting
the values of the h; and J; ; on the D-Wave 2X compared with the D-Wave 2.

The second striking result is the small frequency of success for the full graphs, particularly
for the 1097 qubit D-Wave 2X. As described above, a spanning tree is a difficult problem for
any AQC to solve. That the ground state is found at all for the full graph, even with this low
average success frequency is encouraging.

Assume that the probabilities of success on any anneal cycle are independent random
variables, and are the same for every tree. Consequently the probability of not finding the
ground state is 1 — pgs. For M measurements the probability of not finding the ground state is

(1— pgs)M. The probability of finding the ground state after M measurements is

Pp=1—(1—pg)" . ()
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# | L # | Million Pgs | standard
qubits trees | anneals error
496 2 100 10.0 | 1.0000 0.0
496 | 3 85 8.4 | 0.9999 0.0011
496 | 4 38 3.8 1 0.9779 0.0242
496 5 100 10.0 | 0.8953 0.0308
496 | 6 100 7.9 1 0.7335 0.0444
496 7 80 10.0 | 0.5889 0.0554
496 | 8 100 10.0 | 0.3261 0.0471
1097 | 7 100 10.0 | 0.9944 0.0075
1097 | 8 100 10.0 | 0.8443 0.0364
1097 | 9 100 10.0 | 0.5800 0.0496
1097 | 10 100 10.0 | 0.3444 0.0478
1097 | 11 100 10.0 | 0.2017 0.0403
1097 | 12 100 10.0 | 0.0443 0.0207

Table 3. Details of the results plotted in Fig. 7. The number of spanning trees as well as
the total number of annealing cycles is shown for each K, 4 Chimera size, together with the
frequency a ground state was found and the calculated standard deviation of the results. The
spanning trees all had h;=0 and randomly chosen bond weights J; j==1.

Thus the number M of measurements required to obtain a given frequency Py that the ground
state was found is

M = In (1 — Py) ' (6)

In (1 — pgs)

Every submission to the D-Wave by default requests 10* anneal cycles. Even for an extremely
small average frequency of success pg=0.0005, the number of measurements required to find the
ground state 99.99% of the time would require about 18 submissions. However, we find that
the 1097 qubit D-Wave 2X probability of successfully finding the ground state is most probably
not independent of the particular spanning tree. We have performed 10 anneal cycles (103
submissions with different .J; j=4-1) on at least one spanning tree without the D-Wave returning
the ground state.

7. Discussion, Outlook, and Conclusions

We have performed tests of D-Wave adiabatic quantum computers (AQCs) by detailing the
results of placing spanning trees on the underlying Lx L K, 4 disordered Chimera graph of the
D-Wave machines. Other researchers have put planted solutions on D-Wave machines [12]. A
spanning tree test has a number of advantages over other planted solutions on AQCs. First,
spanning trees are a difficult problem for any AQC machine. The other advantages of spanning
trees are that they work on any graph, each tree includes all qubits, the ensemble of spanning
trees include all couplings J; ;, and even for large graphs it is easy to obtain a spanning tree
drawn uniformly from the ensemble of all spanning trees. The disadvantage is that spanning
trees have no loops, and hence no frustration is present.

The comparison of the two generations of D-Wave machines is encouraging. Spanning trees for
8x8 K44 Chimera graphs were obtained both on the 512 qubit D-Wave 2 (with 496 functioning
qubits) and the 1152 qubit D-Wave 2X (with 1097 functioning qubits). The frequency of finding
the ground state for a tree with one anneal increased from pgs=0.33 for the D-Wave 2 to pys=0.84
for the D-Wave 2X, both for the L=8 Chimera lattice. Some of this increase may be due to the

10



International Conference on Computer Simulation in Physics and Beyond 2015 IOP Publishing
Journal of Physics: Conference Series 681 (2016) 012005 doi:10.1088/1742-6596/681/1/012005

1r—l—H\$ T I
' LY

0.8 \

0.6—

Pys

04—

02—

L

Figure 7. Success frequency of finding the ground state as a function of the size of the Chimera
K44 subgraph. The data are for the D-Wave 2 with 496 qubits (black squares) and the D-
Wave 2X with 1097 qubits (red circles). The error bars for the success frequency are calculated
as described in the text. The dashed and solid lines are guides for the eye. The results are
tabulated in Table 3.

increased accuracy of setting the h; and the J; ; parameters on the D-Wave 2X.

AQCs hold the promise that they can find the ground state of an Ising spin glass, and in
the unphysical limits of operating at zero degrees Kelvin and taking an infinitely long time for
each anneal you are gauranteed to obtain the ground state. Classical computers and advanced
algorithms can obtain solutions that are close to the Ising spin glass ground state, and this
property has been used to benchmark a D-Wave 2X machine [14]. The property of obtaining the
global minimum is what, in the authors opinion, makes AQCs a disruptive computer technology.
The ability of AQCs to find the solution of one particular NP-hard optimization problem, the
ground state of an Ising spin glass, means that in principle other NP-hard problems can be
solved by mapping them onto an Ising spin glass NP-hard problem. Any (non-ideal) AQC is
a probabilistic machine, since it operates using quantum mechanical principles and quantum
mechanics is a theory that only allows an observer to make predictions about probabilities of
measureable quantities.

In this paper we only deal with spanning trees, so the number of edges between qubits is one,
and there are no loops. This could also be called a tree with a tree width of one. Numerical
transfer methods have been used to study Ising systems in two and three dimensions [15, 16] as
well as in non-integer dimensions [17, 18], including studies of metastable phenomena [19, 20].
It would be possible to utilize numerical transfer matrix methods to study spanning trees with
different widths. For example, one could place a tree of width four on the 122=144 square array
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of K44 unit cells shown in Fig. 2. The size of the requried transfer matrix, since every unit
cell would connect to its (at most two) neighboring unit cells with four J;; connections can
be obtained by multiplying matrices of size 2*x2* (after utilizing generalized matrix products
to exactly renormalize the tree branches [21, 22]). These types of numerical transfer matrix
calculations would allow loops within the subgraphs, and hence can be used to study the model
with frustration. Numerical transfer matrix methods have been used previously to study Ising
glasses on regular lattices [23, 24, 25, 26] and on hierarchical lattices with non-integer fractal
dimensions [26].

The question to be asked is whether the glass is half-full or half-empty in terms of usability
of the current generation of D-Wave machines.

The glass-half-full outlook for AQCs is the promise given by Eq. (6). Even for a very low
average success frequency, say pg=0.0005, if you want to find the ground state 99.99% of the
time, you only need to submit the tree to the D-Wave 2X eighteen times with the default
10% anneals per submission. Hence, AQCs are a disruptive technology as no known classical
computer with advanced algorithms could make a similar claim for the 2!%7~1.7x10%30 state
space of the D-Wave 2X machine. The fact that this paper utilizes a D-Wave machine with more
than 1000 qubits while published work on D-Wave machines with about 100 qubits appeared in
print in 2014 [11, 13] shows the speed at which AQC is becoming a reality.

The glass half-empty outlook for AQCs is that for the 1097 qubit D-Wave 2X the ground
state average success frequency for the spanning trees studied was only found on the 1097 qubit
D-Wave 2X with an average frequency of pgs=0.0443. Furthermore, there was at least one
spanning tree on the 1097 D-Wave 2X that did not find the ground state after 103 submissions
(10 anneal cycles). One might expect that general spin-glass problems on the D-Wave 2X may
have a similar difficulty, namely some ground states are much more difficult for the D-Wave 2X
to find than are other ground states. There is still work to do to quantify whether the conclusions
based on defining and attempting to detect quantum speedup in a D-Wave machine with 503
qubits [27] hold when applied to a 1000 qubit D-Wave 2X.
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