000281887 001__ 281887
000281887 005__ 20240625095121.0
000281887 0247_ $$2doi$$a10.1371/journal.pone.0134506
000281887 0247_ $$2Handle$$a2128/9847
000281887 0247_ $$2WOS$$aWOS:000358836800146
000281887 0247_ $$2altmetric$$aaltmetric:4342359
000281887 0247_ $$2pmid$$apmid:26222439
000281887 037__ $$aFZJ-2016-01549
000281887 082__ $$a500
000281887 1001_ $$0P:(DE-HGF)0$$aGiménez-Dejoz, Joan$$b0
000281887 245__ $$aSubstrate Specificity, Inhibitor Selectivity and Structure-Function Relationships of Aldo-Keto Reductase 1B15: A Novel Human Retinaldehyde Reductase
000281887 260__ $$aLawrence, Kan.$$bPLoS$$c2015
000281887 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1455006168_7284
000281887 3367_ $$2DataCite$$aOutput Types/Journal article
000281887 3367_ $$00$$2EndNote$$aJournal Article
000281887 3367_ $$2BibTeX$$aARTICLE
000281887 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000281887 3367_ $$2DRIVER$$aarticle
000281887 520__ $$aHuman aldo-keto reductase 1B15 (AKR1B15) is a newly discovered enzyme which shares 92% amino acid sequence identity with AKR1B10. While AKR1B10 is a well characterized enzyme with high retinaldehyde reductase activity, involved in the development of several cancer types, the enzymatic activity and physiological role of AKR1B15 are still poorly known. Here, the purified recombinant enzyme has been subjected to substrate specificity characterization, kinetic analysis and inhibitor screening, combined with structural modeling. AKR1B15 is active towards a variety of carbonyl substrates, including retinoids, with lower kcat and Km values than AKR1B10. In contrast to AKR1B10, which strongly prefers all-trans-retinaldehyde, AKR1B15 exhibits superior catalytic efficiency with 9-cis-retinaldehyde, the best substrate found for this enzyme. With ketone and dicarbonyl substrates, AKR1B15 also shows higher catalytic activity than AKR1B10. Several typical AKR inhibitors do not significantly affect AKR1B15 activity. Amino acid substitutions clustered in loops A and C result in a smaller, more hydrophobic and more rigid active site in AKR1B15 compared with the AKR1B10 pocket, consistent with distinct substrate specificity and narrower inhibitor selectivity for AKR1B15.
000281887 536__ $$0G:(DE-HGF)POF3-574$$a574 - Theory, modelling and simulation (POF3-574)$$cPOF3-574$$fPOF III$$x0
000281887 588__ $$aDataset connected to CrossRef
000281887 7001_ $$0P:(DE-HGF)0$$aKolář, Michal H.$$b1
000281887 7001_ $$0P:(DE-HGF)0$$aRuiz, Francesc X.$$b2
000281887 7001_ $$0P:(DE-HGF)0$$aCrespo, Isidro$$b3
000281887 7001_ $$0P:(DE-HGF)0$$aCousido-Siah, Alexandra$$b4
000281887 7001_ $$0P:(DE-HGF)0$$aPodjarny, Alberto$$b5
000281887 7001_ $$0P:(DE-HGF)0$$aBarski, Oleg A.$$b6
000281887 7001_ $$0P:(DE-HGF)0$$aFanfrlík, Jindřich$$b7
000281887 7001_ $$0P:(DE-HGF)0$$aParés, Xavier$$b8
000281887 7001_ $$0P:(DE-HGF)0$$aFarrés, Jaume$$b9$$eCorresponding author
000281887 7001_ $$0P:(DE-HGF)0$$aPorté, Sergio$$b10$$eCorresponding author
000281887 773__ $$0PERI:(DE-600)2267670-3$$a10.1371/journal.pone.0134506$$gVol. 10, no. 7, p. e0134506 -$$n7$$pe0134506 -$$tPLoS one$$v10$$x1932-6203$$y2015
000281887 8564_ $$uhttps://juser.fz-juelich.de/record/281887/files/journal.pone.0134506.pdf$$yOpenAccess
000281887 8564_ $$uhttps://juser.fz-juelich.de/record/281887/files/journal.pone.0134506.gif?subformat=icon$$xicon$$yOpenAccess
000281887 8564_ $$uhttps://juser.fz-juelich.de/record/281887/files/journal.pone.0134506.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000281887 8564_ $$uhttps://juser.fz-juelich.de/record/281887/files/journal.pone.0134506.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000281887 8564_ $$uhttps://juser.fz-juelich.de/record/281887/files/journal.pone.0134506.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000281887 8564_ $$uhttps://juser.fz-juelich.de/record/281887/files/journal.pone.0134506.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000281887 909CO $$ooai:juser.fz-juelich.de:281887$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000281887 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000281887 9131_ $$0G:(DE-HGF)POF3-574$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vTheory, modelling and simulation$$x0
000281887 9141_ $$y2016
000281887 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000281887 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000281887 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000281887 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000281887 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPLOS ONE : 2014
000281887 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000281887 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000281887 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000281887 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000281887 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000281887 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000281887 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000281887 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000281887 920__ $$lyes
000281887 9201_ $$0I:(DE-Juel1)INM-9-20140121$$kINM-9$$lComputational Biomedicine$$x0
000281887 9201_ $$0I:(DE-Juel1)IAS-5-20120330$$kIAS-5$$lComputational Biomedicine$$x1
000281887 980__ $$ajournal
000281887 980__ $$aVDB
000281887 980__ $$aUNRESTRICTED
000281887 980__ $$aI:(DE-Juel1)INM-9-20140121
000281887 980__ $$aI:(DE-Juel1)IAS-5-20120330
000281887 9801_ $$aUNRESTRICTED
000281887 9801_ $$aFullTexts
000281887 981__ $$aI:(DE-Juel1)IAS-5-20120330