001     281888
005     20240625095121.0
024 7 _ |a 10.1021/acs.jctc.5b00687
|2 doi
024 7 _ |a 1549-9618
|2 ISSN
024 7 _ |a 1549-9626
|2 ISSN
024 7 _ |a WOS:000362921700021
|2 WOS
024 7 _ |a altmetric:4545440
|2 altmetric
024 7 _ |a pmid:26574261
|2 pmid
037 _ _ |a FZJ-2016-01550
082 _ _ |a 540
100 1 _ |a Sedlak, Robert
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Polar Flattening and the Strength of Halogen Bonding
260 _ _ |a Washington, DC
|c 2015
|b American Chemical Society (ACS)
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1455006402_7284
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a The effect of polar flattening on the stability of 32 halogen-bonded complexes was investigated by utilizing CCSD(T)/CBS, DFT, and DFT-SAPT/CBS methods. It is shown that the value of polar flattening increases with the decreasing value of studied isodensity. For the complexes investigated, the polar flattening based on the isodensity of 0.001 au reaches 0.2–0.3 Å and 10–15% in absolute and relative values, respectively. These geometrical changes induce differences in the stabilization energy up to 20%.
536 _ _ |a 574 - Theory, modelling and simulation (POF3-574)
|0 G:(DE-HGF)POF3-574
|c POF3-574
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Kolář, Michal H.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Hobza, Pavel
|0 P:(DE-HGF)0
|b 2
|e Corresponding author
773 _ _ |a 10.1021/acs.jctc.5b00687
|g Vol. 11, no. 10, p. 4727 - 4732
|0 PERI:(DE-600)2166976-4
|n 10
|p 4727 - 4732
|t Journal of chemical theory and computation
|v 11
|y 2015
|x 1549-9626
856 4 _ |u https://juser.fz-juelich.de/record/281888/files/acs.jctc.5b00687.pdf
|y Restricted
856 4 _ |x icon
|u https://juser.fz-juelich.de/record/281888/files/acs.jctc.5b00687.gif?subformat=icon
|y Restricted
856 4 _ |x icon-1440
|u https://juser.fz-juelich.de/record/281888/files/acs.jctc.5b00687.jpg?subformat=icon-1440
|y Restricted
856 4 _ |x icon-180
|u https://juser.fz-juelich.de/record/281888/files/acs.jctc.5b00687.jpg?subformat=icon-180
|y Restricted
856 4 _ |x icon-640
|u https://juser.fz-juelich.de/record/281888/files/acs.jctc.5b00687.jpg?subformat=icon-640
|y Restricted
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/281888/files/acs.jctc.5b00687.pdf?subformat=pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:281888
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-574
|2 G:(DE-HGF)POF3-500
|v Theory, modelling and simulation
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2016
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J CHEM THEORY COMPUT : 2014
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J CHEM THEORY COMPUT : 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a No Authors Fulltext
|0 StatID:(DE-HGF)0550
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-9-20140121
|k INM-9
|l Computational Biomedicine
|x 0
920 1 _ |0 I:(DE-Juel1)IAS-5-20120330
|k IAS-5
|l Computational Biomedicine
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-9-20140121
980 _ _ |a I:(DE-Juel1)IAS-5-20120330
981 _ _ |a I:(DE-Juel1)IAS-5-20120330


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21