000281937 001__ 281937
000281937 005__ 20240619091204.0
000281937 0247_ $$2doi$$a10.1111/jmi.12378
000281937 0247_ $$2ISSN$$a0022-2720
000281937 0247_ $$2ISSN$$a0368-3974
000281937 0247_ $$2ISSN$$a1365-2818
000281937 0247_ $$2WOS$$aWOS:000379167100008
000281937 0247_ $$2altmetric$$aaltmetric:5056411
000281937 0247_ $$2pmid$$apmid:26820619
000281937 037__ $$aFZJ-2016-01587
000281937 082__ $$a570
000281937 1001_ $$0P:(DE-Juel1)164336$$aBelu, Andreea$$b0$$ufzj
000281937 245__ $$aUltra-thin resin embedding method for scanning electron microscopy of individual cells on high and low aspect ratio 3D nanostructures
000281937 260__ $$aOxford [u.a.]$$bWiley-Blackwell$$c2016
000281937 3367_ $$2DRIVER$$aarticle
000281937 3367_ $$2DataCite$$aOutput Types/Journal article
000281937 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1468934005_23344
000281937 3367_ $$2BibTeX$$aARTICLE
000281937 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000281937 3367_ $$00$$2EndNote$$aJournal Article
000281937 520__ $$aThe preparation of biological cells for either scanning or transmission electron microscopy requires a complex process of fixation, dehydration and drying. Critical point drying is commonly used for samples investigated with a scanning electron beam, whereas resin-infiltration is typically used for transmission electron microscopy. Critical point drying may cause cracks at the cellular surface and a sponge-like morphology of nondistinguishable intracellular compartments. Resin-infiltrated biological samples result in a solid block of resin, which can be further processed by mechanical sectioning, however that does not allow a top view examination of small cell–cell and cell–surface contacts. Here, we propose a method for removing resin excess on biological samples before effective polymerization. In this way the cells result to be embedded in an ultra-thin layer of epoxy resin. This novel method highlights in contrast to standard methods the imaging of individual cells not only on nanostructured planar surfaces but also on topologically challenging substrates with high aspect ratio three-dimensional features by scanning electron microscopy.
000281937 536__ $$0G:(DE-HGF)POF3-552$$a552 - Engineering Cell Function (POF3-552)$$cPOF3-552$$fPOF III$$x0
000281937 588__ $$aDataset connected to CrossRef
000281937 7001_ $$0P:(DE-Juel1)140152$$aSchnitker, Jan$$b1$$ufzj
000281937 7001_ $$0P:(DE-HGF)0$$aBertazzo, S.$$b2
000281937 7001_ $$0P:(DE-Juel1)156529$$aNeumann, Elmar$$b3
000281937 7001_ $$0P:(DE-Juel1)128707$$aMayer, Dirk$$b4$$ufzj
000281937 7001_ $$0P:(DE-Juel1)128713$$aOffenhäusser, Andreas$$b5$$ufzj
000281937 7001_ $$0P:(DE-Juel1)144186$$aSantoro, Francesca$$b6$$eCorresponding author
000281937 773__ $$0PERI:(DE-600)2007259-4$$a10.1111/jmi.12378$$gp. n/a - n/a$$n1$$p 78–86$$tJournal of microscopy$$v263$$x0022-2720$$y2016
000281937 8564_ $$uhttps://juser.fz-juelich.de/record/281937/files/BELU_et_al-2016-Journal_of_Microscopy.pdf$$yRestricted
000281937 8564_ $$uhttps://juser.fz-juelich.de/record/281937/files/BELU_et_al-2016-Journal_of_Microscopy.gif?subformat=icon$$xicon$$yRestricted
000281937 8564_ $$uhttps://juser.fz-juelich.de/record/281937/files/BELU_et_al-2016-Journal_of_Microscopy.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000281937 8564_ $$uhttps://juser.fz-juelich.de/record/281937/files/BELU_et_al-2016-Journal_of_Microscopy.jpg?subformat=icon-180$$xicon-180$$yRestricted
000281937 8564_ $$uhttps://juser.fz-juelich.de/record/281937/files/BELU_et_al-2016-Journal_of_Microscopy.jpg?subformat=icon-640$$xicon-640$$yRestricted
000281937 8564_ $$uhttps://juser.fz-juelich.de/record/281937/files/BELU_et_al-2016-Journal_of_Microscopy.pdf?subformat=pdfa$$xpdfa$$yRestricted
000281937 909CO $$ooai:juser.fz-juelich.de:281937$$pVDB
000281937 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164336$$aForschungszentrum Jülich$$b0$$kFZJ
000281937 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140152$$aForschungszentrum Jülich$$b1$$kFZJ
000281937 9101_ $$0I:(DE-Juel1)PGI-8-PT-20110228$$6P:(DE-Juel1)156529$$aPGI-8-PT$$b3$$kPGI-8-PT
000281937 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128707$$aForschungszentrum Jülich$$b4$$kFZJ
000281937 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128713$$aForschungszentrum Jülich$$b5$$kFZJ
000281937 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144186$$aForschungszentrum Jülich$$b6$$kFZJ
000281937 9131_ $$0G:(DE-HGF)POF3-552$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vEngineering Cell Function$$x0
000281937 9141_ $$y2016
000281937 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000281937 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000281937 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ MICROSC-OXFORD : 2013
000281937 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000281937 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000281937 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000281937 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000281937 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000281937 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000281937 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000281937 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000281937 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000281937 920__ $$lyes
000281937 9201_ $$0I:(DE-Juel1)ICS-8-20110106$$kICS-8$$lBioelektronik$$x0
000281937 9201_ $$0I:(DE-Juel1)PGI-8-PT-20110228$$kPGI-8-PT$$lPGI-8-PT$$x1
000281937 980__ $$ajournal
000281937 980__ $$aVDB
000281937 980__ $$aUNRESTRICTED
000281937 980__ $$aI:(DE-Juel1)ICS-8-20110106
000281937 980__ $$aI:(DE-Juel1)PGI-8-PT-20110228
000281937 981__ $$aI:(DE-Juel1)IBI-3-20200312
000281937 981__ $$aI:(DE-Juel1)PGI-8-PT-20110228