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Abstract Understanding the genetic factors underlying

brain structural connectivity is a major challenge in

imaging genetics. Here, we present results from genome-

wide association studies (GWASs) of whole-brain white

matter (WM) fractional anisotropy (FA), an index of

microstructural coherence measured using diffusion tensor

imaging. Data from independent GWASs of 355 Swedish

and 250 Norwegian healthy adults were integrated by

meta-analysis to enhance power. Complementary GWASs

on behavioral data reflecting processing speed, which is

related to microstructural properties of WM pathways,

were performed and integrated with WM FA results via

multimodal analysis to identify shared genetic associations.

One locus on chromosome 17 (rs145994492) showed

genome-wide significant association with WM FA (meta

P value = 1.87 9 10-08). Suggestive associations (Meta

P value\1 9 10-06) were observed for 12 loci, includ-

ing one containing ZFPM2 (lowest meta P value =

7.44 9 10-08). This locus was also implicated in multi-

modal analysis of WM FA and processing speed (lowest

Fisher P value = 8.56 9 10-07). ZFPM2 is relevant in

specification of corticothalamic neurons during brain

development. Analysis of SNPs associated with processing

speed revealed association with a locus that included SSPO

(lowest meta P value = 4.37 9 10-08), which has been

linked to commissural axon growth. An intergenic SNP

(rs183854424) 14 kb downstream of CSMD1, which is

implicated in schizophrenia, showed suggestive evidence

of association in the WM FA meta-analysis (meta

P value = 1.43 9 10-07) and the multimodal analysis
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(Fisher P value = 1 9 10-07). These findings provide

novel data on the genetics of WM pathways and processing

speed, and highlight a role of ZFPM2 and CSMD1 in

information processing in the brain.

Keywords Imaging genetics � DTI � GWAS � Processing
speed � Fractional anisotropy � Cognition

Introduction

There is a strong genetic influence on brain structure

(Thompson et al. 2001, 2014). The genome wide associa-

tion study (GWAS) approach has proven to be successful in

identifying specific genes related to individual differences

in cortical and subcortical grey matter volumes (Potkin

et al. 2009; Rimol et al. 2010; Bakken et al. 2012; Stein

et al. 2012; Hibar et al. 2015). For white matter (WM)

pathways that are crucial for speed of information pro-

cessing (Kail and Salthouse 1994) studies revealed high

heritability (Kochunov et al. 2010a, 2016; Jahanshad et al.

2013a). There are conflicting reports on few candidate

genes, such as BDNF (Chiang et al. 2011), APOE (Heise

et al. 2011; Westlye et al. 2012; Nyberg and Salami 2014),

ADRB2 (Penke et al. 2010), GRM3 (Mounce et al. 2014),

and ZNF804A (Voineskos et al. 2011; Wei et al. 2012;

Fernandes et al. 2014) among others. In addition, several

groups have undertaken a genome wide approach (Lopez

et al. 2012; Jahanshad et al. 2013b; Sprooten et al. 2014).

Lopez et al. (2012) used a global measure of white matter

tract integrity (gFA) and identified suggestive evidence for

ADAMTS18, LOC388630. Five SNPs reaching a genome-

wide significance were identified in a GWAS of whole

brain fractional anisotropy (FA) (Sprooten et al. 2014).

This study implicated GNA13, HTR7, and CCDC91 genes

to influence brain structure and emphasized the role for

g-protein signaling in WM development and maintenance.

A study by Jahanshad et al. (2013b) identified genome-

wide significant association between a variant in the

SPON1 gene and brain connectivity.

Microstructural variation in WM pathways has been

linked to measures of information processing speed in both

younger adults (Gold et al. 2007; Turken et al. 2008) and in

samples of heterogeneous age (Kennedy and Raz 2009;

Kochunov et al. 2010b; Penke et al. 2010; Madden et al.

2012; Salami et al. 2012). Increased myelination and

axonal diameter is crucial for information processing in the

brain (Tessier-Lavigne and Goodman 1996; Haász et al.

2013). Further, same genetic factors mediate the correla-

tion between WM integrity and intellectual performance

indicating common physiological mechanism for both

(Chiang et al. 2009). The correlation between WM integ-

rity and processing speed although complex (Tuch et al.

2005; Fjell et al. 2011; Tamnes et al. 2012) is consistent not

just in healthy subjects but also in patients with psychiatric

disorders such as schizophrenia (Karbasforoushan et al.

2015; Wright et al. 2015). This gives a strong rationale to

study the potential sources of shared genetic contributions.

Notably, recent study on old order amish families and the

human connectome project (Kochunov et al. 2016) showed

high heritability for both the traits with a high genetic

correlation between the two suggesting common genes

influencing joint variation in WM microstructure and pro-

cessing speed. Support for this notion also comes from

findings that some genes associated with WM microstruc-

ture also associate with processing speed, such as BDNF

(McAllister et al. 2012), and APOE (Luciano et al. 2009).

Notably, a recent large scale GWAS study (Ibrahim-Ver-

baas et al. 2015) on processing speed [letter–digit substi-

tution (LDS)/digit–symbol substitution (DSS) tests]

implicated CADM2, DRD2, and PAX3.

The main purpose of the present study was to identify

genes that jointly influence WM microstructural coherence

as indexed by whole-brain WM fractional anisotropy (FA)

(Pierpaoli and Basser 1996) derived from diffusion tensor

imaging (DTI) data and processing speed. FA reflects the

directional coherence of water molecules. In WM, diffu-

sion perpendicular to the tract is constrained by the axons

and myelin sheaths (Thomason and Thompson 2011), and

can thus be used to characterize tissue integrity. In a first

step we performed meta-analyses of GWAS data from two

independent samples of healthy adults to identify genetic

associations with FA and speed tasks (Nilsson et al. 1997,

2004; Espeseth et al. 2012). Thereafter, we tested for

genetic associations shared by WM and processing speed,

by means of statistical integration of the meta-analysis

results.

Materials and methods

Participants

The Betula sample examined here was part of a larger

prospective cohort study of memory, health and aging

(Nilsson et al. 1997, 2004). The current Betula sub-sample

consisted of 360 participants (191 females and 169 males)

aged between 25 and 80 years (mean = 62.3; SD = 13.3).

Of these, 355 had DTI data (188 females and 167 males;

age range 25–80 years with mean = 62.3; SD = 13.4).

Sample demographics are summarized in Supplementary

Table 1. All participants were native speakers of Swedish.

The age distribution was skewed towards older partici-

pants, with 304 subjects out of 360 between ages 55 and

80 years. None of the participants had any history of severe

neurological illness or events; all had normal or corrected
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to normal vision, and were in good general health. They

were non-demented based on an extensive neuropsycho-

logical examination and clinical evaluation of data

obtained at the test occasions and reviews of medical

records starting from adulthood. All participants signed

informed consent, in accordance with the guidelines of the

Swedish Council for Research in Humanities and Social

Sciences.

The Norwegian Cognitive NeuroGenetics (NCNG)

sample examined here consisted of 250 participants (166

females and 84 males) aged 18–77 years (mean = 48.8;

SD = 16.9) with available DTI data. 220 of these had data

available for processing speed (143 females and 77 males,

mean age 51.1 ranging from 19 to 77 years). Detailed

sample demographics are presented in Supplementary

Table 1. The sample was recruited by advertisements in a

local newspaper to take part in a larger community-based

study on the genetics of cognition (Espeseth et al. 2012).

All participants read an information sheet and signed a

statement of informed consent approved by the regional

committee for Medical and Health Research Ethics (South-

East Norway) (Project ID: S-03116). All participants were

native speakers of Norwegian and had completed basic

education with no history of learning deficits. All partici-

pants were interviewed for past or present neurological or

psychiatric illnesses known to affect the CNS. Any person

with a history of treatment for any of these conditions was

excluded from the sample. Furthermore, persons with a

depression inventory score indicating undiagnosed

depressive illness were excluded. All participants were also

interviewed at each visit according to a ‘Life events

questionnaire’, which included questions on health, alcohol

consumption, smoking habits, physical exercise, and posi-

tive and negative life events.

Genotyping and quality control

Genotyping was performed using commercially available

Illumina arrays on DNA isolated from blood samples. The

genotyping for both cohorts was performed at the Depart-

ment of Genomics, Life and Brain Center, University of

Bonn, Germany. Betula samples were genotyped using

Illumina Omni Express and Omni 1S Bead chip kits.

Genotyping and preprocessing was performed using Illu-

mina GenomeStudio software. Manual examination and

editing of a subset of the genotype clusters was performed

according to the Illumina user guidelines. The following

sample and genotyping quality checks were performed

using PLINK (Purcell et al. 2007) and GenABEL (Aul-

chenko et al. 2007) software tools. Samples with call rates

\0.97, with high autosomal heterozygosity (FDR\ 0.01)

or with sex discrepancies were excluded. Since we aimed

at a genetically homogeneous sample, the population

structure was assessed by multi-dimensional scaling

(MDS) analysis using 250 K random SNPs to exclude

samples with possible non-Swedish ancestry. Cryptic

relatedness was assessed using identity-by-state esti-

mates—IBS (as implemented in GenABEL). The individ-

uals with the higher call rate among the pairs of individuals

showing an IBS C0.85 were retained. Of the 371 individ-

uals originally genotyped, a total of 10 individuals were

excluded: two on the basis of sex discrepancy, four as a

result of falling outside the MDS clustering based on the

first three components, and four on the basis of cryptic

relatedness. This resulted in a data set of 361 individuals.

Further, SNPs were filtered and excluded from the analysis

if they had a call rate \0.95, minor allele frequency

(MAF) \0.01 and Hardy–Weinberg equilibrium (HWE)

exact test P value\0.001. The final clean data set con-

sisted of 1.4 million SNPs. The same genotyping quality

control thresholds were applied to the NCNG sample which

was described earlier by Espeseth et al. (2012).

Genotype imputation

Genotype imputation in the two samples was carried out

using the same imputation protocol provided by the

enhancing neuroimaging genetics through meta-analysis

(ENIGMA), which is accessible at http://enigma.ini.usc.

edu/wp-content/uploads/2012/07/ENIGMA2_1KGP_cook

book_v3.pdf. The 1000 Genomes Project Phase I reference

haplotype data sets for the European populations (EUR)

available at http://www.sph.umich.edu/csg/abecasis/

MACH/download/ were used. The protocol used can be

summarized as follows. First, using the ChunkChromo-

some tool (http://genome.sph.umich.edu/wiki/ChunkChro

mosome), each chromosome was split into manageable

pieces of 5000 SNPs, each with an overlap of 500. Each

chromosomal chunk was then phased into haplotypes using

MaCH (Li et al. 2009, 2010) with 20 rounds and 200 states.

The phased haplotypes were then imputed to the reference

using minimac (Howie et al. 2012) run for five rounds and

200 states. SNPs with an imputation quality estimate Rsq

value[0.5, which is an estimated squared correlation

between imputed and true genotypes, are considered to be

successfully imputed as recommended by the software

developers. The most likely genotypes were then derived

from the dosage values, which were rounded to the nearest

whole number, and converted to the appropriate genotype.

Further quality checks on the genotype files were per-

formed in PLINK to exclude SNPs with a call rate\0.95,

minor allele frequency\0.01 and Hardy–Weinberg

Equilibrium (exact test) P value\0.001. At this stage the

SNP overlap between the two samples was assessed and the

overlapping SNPs were retained for further analysis.

Finally, the following were removed: SNPs with
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ambiguous alleles between the two samples (i.e. A/T and

G/C SNPs), tri allelic SNPs with ambiguous alleles

between the two samples, and single base insertions/dele-

tions. This resulted in a final data set of 6.1 million over-

lapping SNPs between the two samples.

In order to check the accuracy of our genotyping (be-

tween the two genotyping experiments) and of the impu-

tation, 11 individuals from the NCNG sample were

genotyped along with the Betula sample. Thus these 11

individuals were first genotyped on the Illumina

Human610Quad, then run through imputation using the

1000 Genomes reference sample, and finally genotyped on

the OmniExpress ? Omni1S arrays along with the Betula

sample. To calculate the genotyping accuracy between

experiments, we compared N = 373,105 SNPs that over-

lapped between the two genotyping experiments. The

genotyping reproducibility was 99.97 %. To calculate the

imputation accuracy, we compared 666,027 SNPs that had

been imputed in these 11 NCNG samples (based on the

Illumina Human610Quad genotyping and imputation with

the1000 Genomes reference sample) and that were also

genotyped with the OmniExpress ? Omni1S arrays. The

accuracy of the imputation compared to the genotyping

was 99.67 %.

Diffusion MRI protocol and data processing

A detailed description of the DTI MRI methods and sub-

sequent data analysis for the Betula sample is available

elsewhere (Salami et al. 2012). In brief, all the MRI data

were acquired at Umeå Center for Functional Brain

Imaging (UFBI) using the same 3T GE scanner with a

32-channel head coil. Diffusion-weighted data were

acquired in three repetitions of 32 independent directions

(b = 1000 s/mm2) and six non-gradient (b = 0 s/mm2)

images. The data matrix was interpolated to a 256 9 256

matrix with an up-sampled spatial resolution of

0.98 9 0.98 9 2 mm. The three runs were then averaged

and corrected for head movement and eddy current dis-

tortions. The first volume within the averaged volume that

did not have a gradient applied was used to generate a

binary brain mask. Finally, DTI fit (Behrens et al. 2003)

was used to fit a diffusion tensor to each voxel included in

the brain mask, yielding a voxel-wise FA volume for each

subject.

The data and processing scheme for the NCNG data was

performed as previously described (Westlye et al. 2012).

Imaging was performed on a 12-channel head coil on a 1.5-T

Siemens Avanto scanner (Siemens Medical Solutions,

Erlangen, Germany) at Oslo University Hospital, Rikshos-

pitalet. For diffusion weighted imaging a single-shot twice-

refocused spin-echo echo planar imaging sequence with the

following parameters was used: repetition time (TR)/echo

time (TE) = 8590 ms/87 ms, b value = 1000 s/mm2, voxel

size = 2.0 9 2.0 9 2.0 mm, and 64 axial slices. The

sequencewas repeated twicewith 10 b = 0 and 60 diffusion-

weighted volumes per run. DTI datasets were processed

using the FMRIB Software Library (FSL) (Smith et al.

2004). Each volume was affine registered to the first b = 0

volume using FMRIB’s linear image registration tool

(FLIRT) (Jenkinson et al. 2002) to correct for motion and

eddy currents. After removal of non-brain tissue, FA (Basser

and Pierpaoli 1996), eigenvectors, and eigenvalue maps

were computed by linearly fitting a diffusion tensor to the

data.

Both samples were analyzed using the same processing

pipeline. FA volumes were transformed into a common

space and skeletonized using tract skeleton generation

program as employed in tract based spatial statistics

(TBSS) (Smith et al. 2006). All volumes were nonlinearly

warped to the FMRIB58_FA template by use of local

deformation procedures performed by FMRIB’s nonlinear

image registration tool (FNIRT) (Andersson et al. 2007).

Next, a mean FA volume of all subjects was generated and

thinned to create a mean FA skeleton representing the

centers of all common tracts. We thresholded and binarized

the mean skeleton at FA[0.2. Finally, each subject’s FA

map was projected onto the common skeleton, yielding

subject-specific FA skeleton maps. Whole-brain FA,

computed by averaging FA values across the entire skele-

ton for each subject, was used in the GWAS.

Measures of speed of processing

In Betula, a revised version of the Wechsler (1981) DSS

test was used: the letter–digit substitution (LDS) test

(Nilsson et al. 2005). Briefly, it consists of rows of blank

squares, each paired with a letter in a random sequence. A

key pairing each letter with a number (1–9) is printed

above these rows. Following ten practice trials, partici-

pants are asked to fill in the correct number in the blank

squares, according to the key, as quickly and accurately

as possible. The final test score is the number of correct

responses given within a period of 60 s (max

score = 125).

In NCNG the digit–symbol substitution (DSS) test from

WAIS-R (Wechsler 1981), which has similar basic struc-

ture and sensitivity, was used. Briefly, it consists of rows of

blank squares, each paired with a number from one to nine

in a random sequence. A key pairing each number with a

nonsense symbol is printed above these rows. Following

seven practice trials, participants are asked to fill in the

correct nonsense symbol in the blank squares, according to

the key, as quickly and accurately as possible. The final test

score is the number of correct responses given within a

period of 90 s.
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Correlation between FA and measures of speed

of processing

WM FA and speed task measures showed a negative cor-

relation with age in both the samples. For WM FA the

correlation with age was r = -0.64 and r = -0.56, and

for the speed task it was r = -0.56 and r = -0.53 for the

Betula and NCNG samples, respectively. The unadjusted

correlation between FA and the speed task was r = 0.48 in

the Betula and r = 0.38 in the NCNG sample. When

adjusted for age, age2 and gender the correlations were

modest at r = 0.18 in the Betula sample and r = 0.11 in

the NCNG sample.

GWAS association testing

We tested for single-marker allelic association under an

additive model using linear regression, as implemented in

the –linear option in the PLINK software. Age and sex

were included as covariates. In addition, the age2 term was

added to the FA GWAS to account for potential nonlinear

relationships between age and WM changes in the brain

(Bartzokis et al. 2010; Westlye et al. 2010). Let a SNP has

AA, AB and BB as genotypes, and S be the number of B

alleles in an individual. Linear regression allows us to

include covariates such as gender, age, etc.

FAi ¼ b0 þ bageagei þ bcalCi þ bmalemalei þ bsnpSi þ ei

where, ei �Nð0; r2Þ. We compared the distribution of

P values obtained under the additive model to that

expected under the null hypothesis of no association across

the genome and report the quantile–quantile plot to verify

the absence of systematic biases due to experimental or

other confounding factors such as population stratification.

The inflation factor (k) and corresponding standard errors

(SE) for the distribution of P values were estimated using

the estlambda function in the GenABEL software.

Manhattan and q–q plots were generated using the tool

available at https://github.com/stephenturner/qqman/blob/

master/qqman.r.

Meta-analysis

The overall measure of association in the two samples

tested was obtained by meta-analysis, using the inverse

variance weighted model from the METAL software

package (Willer et al. 2010). The inverse variance based

meta-analysis takes inputs: bi, effect size estimate for study

i; sei, standard error for study i, with intermediate statistics:

wi ¼ 1
se2

i

, se ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=
P

i wi

p

, b ¼
P

i biwi=
P

i wi. Overall Z

score: Z ¼ b
se, overall P value: P ¼ 2/ �Zj jð Þ: We further

applied stringent filters to the meta-analysis results by only

retaining SNPs showing the same direction of effect in both

the samples and meta-analysis P values (meta P values)

that were smaller, or more significant, than the two indi-

vidual P values. SNPs with a P value below the traditional

GWAS threshold (P value B5 9 10-8) were considered

genome-wide significant. Additionally, SNPs showing

suggestive evidence of association (meta P value B10-6)

are also reported in this paper.

Since imputed data were used in this analysis, a high

level of linkage disequilibrium (LD) was expected between

SNPs showing suggestive evidence of significance. Thus,

pair-wise LD for these markers was estimated using—ld

option in PLINK, applying the 1000 Genomes Project EUR

genotype data release April 2012 as reference and inde-

pendent loci (as defined by pairwise r2\ 0.2 or dis-

tance[250 kb) with at least one SNP showing suggestive

evidence of significant association. Then, for each of the

LD-independent signals, locus-specific plots (Pruim et al.

2010) were generated.

Genetic overlap test between the traits

To assess the genetic overlap between the two GWAS

results we used gene set enrichment analysis (GSEA).

GSEA, originally developed for interpreting gene

expression studies (Song and Black 2008; Ackermann

and Strimmer 2009), is now also applied to GWAS data

(Ersland et al. 2012; Fernandes et al. 2013) to test if

specific gene sets of interest are enriched for association

in a GWAS. First, P values from the two meta-analyses

were assigned to genes and used to calculate gene-based

scores, using the R package LDsnpR (Christoforou et al.

2012) with ENSEMBL66 gene definitions (±10 kb).

Since the datasets used were imputed at a high-density

level, no additional LD parameters were included. Each

ENSEMBL gene was then scored based on the lowest

P value observed in the gene and corrected for the total

number of SNPs in the gene using a modified Sidak’s

correction (Saccone et al. 2007). This gene scoring

method was found to correlate highly with minimal

P value permutation-based scoring (Christoforou et al.

2012). Gene set enrichment analysis was performed

using the GSEA tool (Mootha et al. 2003; Subramanian

et al. 2005) provided for download at http://www.broad

institute.org/gsea/index.jsp. Given an a priori defined set

of genes S, the goal of GSEA is to determine whether

the members of S are randomly distributed throughout

L or primarily found at the extremes (top or bottom). An

enrichment score (ES) is calculated reflecting the degree

of over representation that corresponds to a Kol-

mogorov–Smirnov-like statistic. Statistical significance

(nominal P value) of the ES is estimated using an

empirical phenotype-based permutation test. When a
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database of gene sets is evaluated, the estimated signif-

icance level is adjusted for multiple hypothesis testing.

First, the ES for each gene set is normalized to account

for the size of the set and then control the proportion of

false positives by calculating the false discovery rate

(FDR). The analysis was performed on the pre-ranked

list based on the Saccone-corrected gene scores with

1000 permutations. The test parameters were kept at the

default settings.

To avoid artifacts in the enrichment test due to regions

with high LD, the test sets (i.e., top 50 to top 2000) were

pruned to contain only one gene in LD with the same

markers (for details, see Fernandes et al. 2013).

The GSEA method used in the present study tests

whether the top hits in one trait (top 50, 100, 150, 250, 500,

750, 1000 and 2000 genes) are enriched in the second trait

and vice versa. Each GSEA was run three times and a test

gene set was considered as significantly enriched only if

the nominal P value from the GSEA analysis was smaller

than 0.05. For each gene set that showed a significant

P value, random mimic gene sets (N = 100) were gener-

ated, with each random set having the same number of

SNPs and number of genes as the test gene set. GSEA was

run for each significant gene set along with its random gene

sets and the results were ranked according to the enrich-

ment score (Ersland et al. 2012; Fernandes et al. 2013). The

gene set was considered to show truly significant enrich-

ment only if it passed this random gene set test by being in

the top 5 % of the ranked list.

Multimodal analysis

To identify the commonality between the GWAS results

from FA and the speed task measure we used a Fisher’s

combined probability test for combining the P values from

the two meta-analyses (Fisher 1932). The idea is that if the

‘k’ null hypotheses are all correct, the P values will be

uniformly distributed on [0, 1] independently of each other.

Then, X ¼ �2
Pk

i¼1 lnðPiÞ with X following a X2
2k from

which a P value for the global hypothesis can easily be

obtained. Since this test does not account for the direction

of effect, only those SNPs that showed the same direction

of effect in the two meta-analyses were included in the

analysis. The results from the combined analysis were also

filtered to retain those SNPs that showed a Fisher P value

that was smaller than the two individual meta P values,

with each meta P value being\0.05.

Voxel-wise analysis

In keeping with some past reports (e.g., Sprooten et al.

2013), we considered a whole-WM FA-measure in the

main analyses. Previous studies suggest that this global

measure is a good approximation for relations between

specific WM tracts and other variables, such as chrono-

logical age (Westlye et al. 2010; Salami et al. 2012). We

had no a priori reason to expect this to be different for

relations with genes, although some recent data indicate

that there may be some tract-specific genetic relations

(Kochunov et al. 2015). Based on the top hit from the WM

FA analysis (rs149603240 in the ZFPM2 gene) we con-

ducted some preliminary analyses of general versus local

relations between WM and genetic variation by voxel-wise

analyses using non-parametric permutation-based statistics

estimated via a randomization algorithm implemented in

the FSL. Initial data processing and TBSS analysis was

performed jointly on both samples up to the point of final

statistical analysis, thus ensuring that the analysis was

performed using a common mask. The statistical analyses

were performed for each sample individually, testing the

effect of the relevant allele status on FA while including

age and sex as covariates. Ten thousand permutations were

run for each contrast (testing positive and negative asso-

ciations with allele carrier status, respectively), and

threshold-free cluster-enhancement (TFCE) (Smith and

Nichols 2009) was used for statistical inference to avoid

arbitrary initial cluster-forming thresholds. P values\0.05

(two-tailed, permutation-based TFCE-corrected) were

regarded significant, corrected for multiple comparisons

across space. Note that these voxel-wise analyses were

only performed for alleles which showed a significant

association with mean skeleton FA in both samples to

characterize the spatial distribution of the effects, and the

voxel-wise correction for family-wise errors should thus be

regarded as relatively conservative.

Results

GWAS of WM FA

Using an additive model with age, age2 and sex as

covariates, associations between 6.1 million SNPs and

mean skeletal FA were tested in the two samples followed

by meta-analysis. The q–q plot showing the P value dis-

tribution from the meta-analysis is shown in Fig. 1a (left

panel), and the Manhattan plot for the same analysis is

presented in Fig. 1b (upper panel). The q–q and Manhattan

plots for the individual samples are shown in the Supple-

mentary Figure. One SNP (rs145994492) surpassed the

conventional threshold for genome-wide significance of

5 9 10-8 in the GWAS of mean skeletal FA. A total of 50

other SNPs showed a meta P value B10-6. Table 1a shows

the different genomic loci (12 in total) represented by these

SNPs and the most significant SNP(s) in each locus after
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pruning for LD at r2\ 0.8. The SNPs were annotated to

the following genes: ME3, MTMR7, JAG1, SLX4IP,

TBXAS1, IGSF10 and MED12L (Fig. 2). One of the top

hits, rs147652117, was found to be in strong linkage dis-

equilibrium with an intronic SNP, rs149603240 (pairwise

r2 = 0.73), in the closest gene ZFPM2. The marker

rs183854424, which showed suggestive evidence of asso-

ciation, was annotated to the nearest gene, CSMD1 (14 kb

downstream). Several regions with suggestive levels of

association were located in intervals that were not near any

known genes (intergenic regions; see Table 1). The genes

ZFPM2, MTMR7, and JAG1 have been implicated in CNS-

related functions (Mochizuki and Majerus 2003; Ables

et al. 2011; Nielsen et al. 2013). The CSMD1 gene has been

implicated in schizophrenia (Håvik et al. 2011; Ripke et al.

2014) and in neuropsychological deficits in a mouse model

(Steen et al. 2013). Further, the GWAS data were mined for

polymorphisms implicated in previous reports on candidate

genes and recent genome-wide studies of WM FA (Lopez

et al. 2012; Jahanshad et al. 2013b; Sprooten et al. 2014)

and the findings from two large GWASs of brain volu-

metric measures (Stein et al. 2012; Hibar et al. 2015)

(Supplementary Table 2). None of the genes surpass the

suggestive level of significance of meta

P value\1 9 10-06. The lowest P value was observed for

the gene ERBB4 (meta P value = 0.0005).

GWAS of processing speed

For processing speed, scores from the speed tasks (letter–

digit-/digit–symbol substitution) were used to test for

genetic association in the GWAS (Fig. 1a right panel and

1b lower panel). The q–q and Manhattan plots for the

individual samples are shown in the Supplementary Figure.

Table 1b shows the top hits from the analysis of genes

related to speed of processing (meta P value B10-6). Of

the top hits, rs6972739 surpassed the conventional thresh-

old for genome-wide significance, and a total of 47 other

SNPs showed a meta P value B10-6. Table 1b shows

the genomic loci represented by SNPs with meta

P value B 10-6 after LD pruning (r2\ 0.8). Together

these pruned SNPs represent seven different genomic

locations (Fig. 3), which include the genes SSPO, ZNF862,

ATP6V0E2, ITPR2, SLC15A5, MEGF10, KLF13, and

COL5A1. Of these, SSPO, ITPR2, and MEGF10 have been

implicated in CNS-related functions (van Es et al. 2007;

Singh et al. 2010; Scheib et al. 2012; Grondona et al.

2012). For illustration, Fig. 4 shows genetic mean differ-

ences in performance of the processing speed task in both

samples for rs6972739. This SNP is the most strongly

associated with processing speed in our meta-analysis and

is located in the SSPO locus. The GWAS data was mined

for polymorphisms implicated in a recent large scale study

on processing speed using the LDS/DSS tasks (Ibrahim-

Verbaas et al. 2015) (Supplementary Table 2). None of the

genes surpass the suggestive level of significance of meta

P value\1 9 10-06. However, nominal significance was

observed for CADM2, DRD2, PAX3, and WDR72 impli-

cated by this study.

Genetic overlap between two traits: results

from GSEA

The top gene sets associated with processing speed were

significantly enriched for association in the FA GWAS

(Table 2). Random gene set testing validated this finding:

these gene sets ranked in the top 5 % when tested along

with 100 random genes sets. No significant positive

enrichment of top FA hits in processing speed was

observed.

Identification of shared genetic associations for FA

and processing speed

Table 1c shows the three top hits from the analysis of

genes related to both FA and speed of processing

(P value B10-6). Two of the SNPs identified in the joint

analysis, rs183854424 (14 kb downstream of CSMD1) and

rs149603240 (in an intron of ZFPM2) were also among the

top hits in the analysis of FA-related genes (Table 1a). The

third marker, rs74887000, is an intergenic SNP newly

identified in this analysis.

Spatial distribution of FA effect

We carried out voxel-wise analyses for the ZFPM2 intronic

SNP rs149603240, which shows a suggestive level of

association with WM FA and is significant in the joint

analysis with processing speed. A strong effect was

observed in both samples, with TC carriers showing

decreased FA. Figure 5 depicts the estimated marginal

means of global WM FA per allelic group. The effect was

anatomically non-specific, covering WM pathways in large

parts of the brain (Fig. 6).

Discussion

This study revealed novel associations between genetic

variants in specific loci and mean skeletal FA, a whole-

brain index of microstructural coherence. A genome-wide

significant association (meta P value = 1.87 9 10-08)

with WM FA was observed for an intergenic SNP

(rs145994492), located on chromosome 17. This genetic

variant appears to be isolated as no other SNP in the region

show suggestive levels of association. Given the low allele
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frequency (\5 %) of this SNP one should be cautious in

the interpretation of this signal. Similarly, several other

suggestive association signals were not annotated to genes

(intergenic). Genome-wide suggestive significance (meta

P value B10-6) was observed for ME3. This gene encodes

mitochondrial malic enzyme 3, NADP(?) dependent,

which catalyzes the oxidative decarboxylation of malate to

pyruvate. Interestingly, a copy number variant which

includes the ME3 gene has been associated previously with

brain volume (Boutte et al. 2012). The third most signifi-

cant association in the present study was observed for

ZFPM2 (Zinc Finger Protein, FOG Family Member 2), a

cofactor for the GATA family of transcription factors,

which regulates the expression of GATA target genes.

ZFPM2 is expressed predominantly in the brain, heart, and

testis (Lu et al. 1999) and is relevant in the specification of

corticothalamic neurons during neuronal development

(Kwan et al. 2008; Nielsen et al. 2013; Deck et al. 2013).

Our voxel-wise findings indicate a wide-ranging role of

genetic variants in ZFPM2 in widely distributed WM

pathways (Fig. 6). Further, ZFPM2 is a negative regulator

of the PI3K-Akt pathway (Hyun et al. 2009) which in turn

is implicated in neurogenesis, neuronal survival, and

synaptic plasticity (Spencer 2008), as well as differentia-

tion of oligodendrocytes (Pérez et al. 2013). Other top

signals included MTMR7, JAG1, SLX4IP, TBXAS1,

IGSF10 and MED12L. JAG1 has been related to many

CNS functions such as synaptic plasticity and axon guid-

ance (Ables et al. 2011), which is in accordance with the

present findings.

The analysis of genetic variants related to processing

speed suggested associations with some candidate genes

previously linked to various brain-related phenotypes

(SSPO, ITPR2, MEGF10). In humans, the SSPO gene

encodes the SCP-spondin protein which contributes to

commissural axon growth, notably in the posterior com-

missure (Grondona et al. 2012). The integrity of inter-

hemispheric pathways is critical for cognitive information

processing speed (Bergendal et al. 2013). The present

findings associate the G allele of rs6972739, the most

significant SNP in this locus, with faster performance in the

processing speed task (Fig. 4). ITPR2 has been identified as

a susceptibility gene in sporadic amyotrophic lateral scle-

rosis, possibly via its role in glutamate-mediated neuro-

transmission (van Es et al. 2007).

Although well-designed individual GWA studies like

ours have the capacity to identify novel loci, candidate

genes and SNPs from previously published GWASs failed

to reach nominal significance in our study (Supplementary

Table 2). Possible explanations for this inconsistency

include limited sample size, polygenic inheritance of

complex traits and genetic heterogeneity among different

study groups (Liu et al. 2008; Pei et al. 2014).

The primary purpose of the present study was to test the

hypothesis that some genes influence both WM

microstructure and processing speed. This kind of multi-

modal approach (Thompson et al. 2014) has been proposed

as a way of enhancing the chances of identifying significant

top hits. GSEA between the two traits revealed a significant

positive enrichment of the top processing speed genes in

the FA GWAS. This implies that the genetic associations

identified in the FA GWAS were also enriched for asso-

ciations relevant in processing speed. The Fisher’s com-

bined P value method identified the highest significance

(Fisher P value = 1 9 10-07) for a SNP 14 kb down-

stream of the CSMD1 gene, which has been implicated in

schizophrenia (Håvik et al. 2011; Ripke et al. 2014).

CSMD1 is also relevant at the functional level, since it has

been implicated in neuropsychological deficits in the

mouse (Steen et al. 2013). In addition, an intronic SNP in

ZFPM2 was identified in the analysis of shared associa-

tions. The CSMD1 and ZFPM2 SNPs were both among the

top hits in the analysis of FA alone, but were not top hits in

the analysis of speed-related genes. Thus, the putative role

of the ZFPM2 or CSMD1 loci in information processing

speed as revealed here would not have been discovered had

processing speed been the only phenotype included. As

noted above, the ZFPM2 gene is relevant for the specifi-

cation of corticothalamic neurons during neuronal devel-

opment. Corticothalamic neurons are crucial for processing

and transmission of sensory information (Alitto and Usrey

2003; Bruno and Sakmann 2006; Briggs and Usrey 2008).

A role for ZFPM2 in mediating processing speed is con-

sistent with these prior observations.

None of the top hits in the processing speed analysis

came out as strong hits in the joint analysis. Thus the

enrichment effect of adding a phenotype to the multi-

modal analysis was not symmetrical. This impression is

further underscored by results from gene-set enrichment

analysis where we observed that the genes associated

with processing speed show an enrichment of association

bFig. 1 Genome-wide plots for the meta-analysis results of whole-

brain skeletal FA and processing speed. a q–q plots of meta-analysis

results of FA (k = 1.02, SE = 5.42 9 10-6), and processing speed

(k = 1.01, SE = 3.56 9 10-6) with the diagonal line representing

the expectation under the null hypothesis of no association. b Distri-

bution of log-transformed P values (Y-axis) from the meta-analysis of

FA and processing speed for 6.12 million SNPs tested plotted against

the chromosomal positions (X-axis). The red line represents the

genome-wide significant threshold of 5 9 10-8 and the blue line

represents the threshold for suggestive evidence of 10-6
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Table 1 Genome-wide significant and suggestive SNPs from meta-analysis of whole-brain skeleton FA (a), Processing Speed (b), and the

multimodality approach (c)

a

SNP CHR BP LD A1 A2 Betula (N = 355)

Geno Rsq MAF Beta P

rs145994492 17 52423691 G A Imp 0.89 0.032 –0.0172 3.68 9 10-06

rs7943741 11 86195270 G A Imp 1.00 0.365 –0.0048 0.00035

rs6792495 3 194713051 C T Gen 1.00 0.095 –0.0093 2.98 9 10-05

rs147652117 8 106230390 A G Imp 0.91 0.020 –0.0194 4.89 3 10205

rs149603240 8 106398958 0.73 T C Imp 0.96 0.025 –0.0153 0.00029

rs183854424 8 2778557 G T Imp 0.80 0.076 –0.0104 2.77 9 10-05

rs10110576 8 128699454 A G Gen 1.00 0.288 0.0042 0.00278

rs144018030

rs139701334

5

5

104310291

104517549

0.56 A

A

G

C

Imp

Imp

0.81

0.66

0.014

0.014

–0.0146

–0.0146

0.00927

0.00927

rs10114823 9 96510399 T C Imp 0.99 0.028 –0.0108 0.00692

rs3213603 8 17188911 G A Imp 1.00 0.203 –0.0051 0.00094

rs1232607

rs640336

rs1051421

20

20

20

10609594

10561369

10620275

0.57

0.6

T

C

T

C

T

C

Imp

Imp

Gen

1.00

1.00

1.00

0.370

0.256

0.283

0.0054

0.0067

0.0064

8.82 3 10205

2.29 9 10-05

3.23 9 10-05

rs2267693 7 139597043 G A Imp 0.99 0.020 –0.0171 0.0003

rs115642867 3 151145469 G A Gen 1.00 0.013 –0.0217 0.00022

b

SNP CHR BP LD A1 A2 Betula (N = 360)

Geno Rsq MAF Beta P

rs6972739 7 149550942 T G Imp 0.98 0.107 –3.363 2.23 3 10206

rs3823698 7 149563894 0.66 G A Gen 0.93 0.094 –3.508 5.32 9 10-06

rs117443760 7 149570724 0.56 C A Imp 1.00 0.086 –3.597 5.95 9 10-06

rs73168071 7 149541502 0.46 T C Imp 1.00 0.165 –2.902 2.87 9 10-06

rs16930911 12 26660336 C T Imp 1.00 0.031 5.552 1.54 9 10-05

rs1467356 12 16338172 G A Gen 0.96 0.1859 –2.884 8.65 9 10-07

rs73785576 5 126636244 C T Gen 1.00 0.060 4.664 5.22 9 10-06

rs61642959 4 4961319 T C Imp 0.97 0.186 –2.582 5.56 9 10-06

rs4779527 15 31736091 T C Gen 1.00 0.110 –3.705 9.61 9 10-07

rs10776903 9 137689481 A G Imp 1.00 0.407 1.89 7.55 9 10-05

c

SNP CHR BP A1 A2 Betula

Geno Rsq MAF

rs183854424 8 2778557 G T Imp 0.80 0.076

rs149603240 8 106398958 T C Imp 0.96 0.025

rs74887000 17 41695496 A G Gen 0.92 0.034

a

SNP NCNG (N = 250) Meta HGNC Symbol

Geno Rsq MAF Beta P Effect SE P

rs145994492 Imp 0.54 0.014 –0.0199 0.00213 0.0179 0.0032 1.87 9 10-08 Intergenic

rs7943741 Gen 1.00 0.348 –0.0062 6.03 9 10-05 0.0054 0.001 6.49 9 10-08 ME3

rs6792495 Imp 0.64 0.084 –0.0096 0.00089 0.0094 0.0017 6.54 9 10-08 Intergenic

rs147652117

rs149603240

Imp

Imp

0.77

0.73

0.012

0.016

–0.0240

–0.0189

0.00053

0.00185

–0.0209

–0.0165

0.0039

0.0034

7.44 3 10208

1.57 9 10-06

ZFPM2

ZFPM2

rs183854424 Imp 0.58 0.036 –0.0121 0.00197 0.0109 0.0021 1.43 9 10-07 Closest gene CSMD1 (14 kb downstream)

4652 Brain Struct Funct (2016) 221:4643–4661

123



Table 1 continued

a

SNP NCNG (N = 250) Meta HGNC Symbol

Geno Rsq MAF Beta P Effect SE P

rs10110576 Imp 1.00 0.41 0.0064 1.44 9 10-05 0.0053 0.001 1.67 9 10-07 Intergenic

rs144018030

rs139701334

Imp

Imp

0.83

0.66

0.012

0.012

–0.0331

–0.0331

1.80 3 10206

1.80 9 10-06

–0.0221

–0.0221

0.0043

0.0043

2.87 3 10207

2.87 9 10-07

Intergenic

rs10114823 Imp 0.97 0.03 –0.0200 6.24 9 10-06 –0.015 0.0029 2.91 9 10-07 Intergenic

rs3213603 Imp 0.97 0.204 –0.0074 8.87 9 10-05 0.006 0.0012 3.29 9 10-07 MTMR7

rs1232607

rs640336

rs1051421

Imp

Imp

Gen

1.00

0.99

1.00

0.338

0.21

0.262

0.0048

0.0049

0.0045

0.00195

0.00754

0.0058

0.0051

–0.0059

0.0055

0.001

0.0012

0.0011

4.54 3 10207

5.42 9 10-07

6.51 9 10-07

JAG1, SLX4IP

JAG1, SLX4IP

JAG1, SLX4IP

rs2267693 Imp 0.96 0.026 –0.0163 0.00069 0.0167 0.0033 5.42 9 10-07 TBXAS1

rs115642867 Imp 0.81 0.014 –0.0206 0.00131 0.0212 0.0043 7.57 9 10-07 IGSF10, MED12L

b

SNP NCNG (N = 220) Meta HGNC

Symbol
Geno Rsq MAF Beta P Effect SE P

rs6972739 Imp 0.96 0.102 –4.838 0.00692 –3.5613 0.6504 4.37 3 10208 ZNF862,
SSPO,
ATP6V0E2

rs3823698 Gen 1.00 0.096 –5.386 0.00327 3.7885 0.6999 6.21 9 10-08 ZNF862,
SSPO,
ATP6V0E2

rs117443760 Imp 0.93 0.096 –5.386 0.00327 3.8785 0.7183 6.69 9 10-08 ZNF862,
SSPO,
ATP6V0E2

rs73168071 Imp 0.91 0.148 –3.07 0.04028 –2.9262 0.5645 2.18 9 10-07 ZNF862,
SSPO,
ATP6V0E2

rs16930911 Imp 0.96 0.042 7.117 0.003792 –5.8857 1.123 1.60 9 10-07 ITPR2

rs1467356 Gen 0.98 0.228 –1.602 0.1709 2.6327 0.5163 3.41 9 10-07 SLC15A5

rs73785576 Imp 1.00 0.036 5.142 0.06126 –4.7212 0.9457 5.97 9 10-07 MEGF10

rs61642959 Imp 0.98 0.178 –2.34 0.06923 –2.5432 0.5131 7.17 9 10-07 Intergenic

rs4779527 Gen 1.00 0.084 –1.434 0.4005 –3.3415 0.6809 9.24 9 10-07 KLF13

rs10776903 Imp 1.00 0.41 2.846 0.003372 2.076 0.4235 9.49 9 10-07 COL5A1

c

SNP NCNG Meta FA Meta speed task Fisher–P HGNC symbol

Geno Rsq MAF Effect SE P Effect SE P

rs183854424 Imp 0.58 0.036 0.0109 0.0021 1.43 9 10-07 1.7805 0.8432 0.03472 1.00 9 10-07 Closest gene CSMD1
(14 kb downstream)

rs149603240 Imp 0.74 0.016 –0.0165 0.0034 1.57 9 10-06 –3.0633 1.4161 0.03053 8.56 9 10-07 ZFPM2

rs74887000 Imp 0.78 0.022 –0.0098 0.003 0.00099 –4.8929 1.207 5.04E-05 8.93 9 10-07 Intergenic

A SNP was assigned to a gene if it falls within ±10kbp of the gene based on annotation from ENSEMBL release 66

CHR chromosome, BP base pair position on the GRC human genome assembly 37, LD pair-wise linkage disequilibrium (LD) with the most

significant SNP in the close vicinity (bold faced), A1 first allele for the marker, A2 second allele for the marker, Geno shows whether the SNP has

directly been genotyped (Geno) or imputed (Imp), Rsq imputation quality estimate r-square value, MAF minor allele (A1) frequency, P P value,

effect overall estimated effect size for A1 in the meta-analysis, SE standard error for the overall estimated effect size for A1 in the meta-analysis,

P P value, HGNC symbol genes to which the SNPs were assigned
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in FA, but there is no reciprocal enrichment. We spec-

ulate that this asymmetry might be due to the fact that

performance in the behavioral task reflects processes

other than information processing speed, such as atten-

tion and working memory. Another possible explanation

is that FA only accounts for a limited amount of the

variance in processing speed.

In our study we have successfully identified one gen-

ome-wide significant SNP each for WM FA and processing

speed, and we have observed multiple loci that show sug-

gestive evidence that the phenotype is affected by many

genetic variants (polygenicity). Interestingly, this is con-

sistent with only five novel loci surpassing the genome

wide significance in the recent large GWAS (30,177 indi-

viduals from 50 different cohorts) of brain subcortical

volumetric measures (Hibar et al. 2015). However, our

study is limited by several factors, which call for caution in

the interpretation. First, it must be noted that even though

our sample is among the largest reported for GWAS of FA,

the sample size is still rather limited for a GWAS study. It

is a general observation in complex trait/disease genetics

that common variants (MAF C0.01) explain a large pro-

portion of the phenotypic variance with small or modest

effects, and large sample sizes are needed for genome-wide

significance to be achieved. In addition, the sample com-

position was biased towards older adults, and this could

potentially influence the results, for example if some genes

exert a stronger effect at younger ages (but see McClearn

et al. 1997 for a suggestion that the same genes contribute

to individual differences early as well as later in life). Our

study is also limited by the lack of a replication sample.

Rather than using one sample as the discovery sample and

Fig. 2 Locus-specific plots highlighting the loci implicated by SNPs

reaching a significance threshold of meta P value\10-6 for FA. a–
i Each plot shows the -log10 P value (Y-axis) of SNPs arranged

according to their chromosomal positions (X-axis). The locus-specific

plots include the genes ME3 (b), ZFPM2 (d), MTMR7 (i), JAG1 and

SLX4IP(j), TBXAS1 (k), and IGSF10 and MED12L (l). The blue lines
show estimated recombination rates calculated from the HapMap

data. The arrows represent the genomic locations of genes based on

the NCBI Build 37 human assembly. SNP color represents LD with

the SNP showing highest association in the locus. The SNP

annotation is represented as follows: circles no annotation; squares

synonymous or 30 UTR; triangles non-synonymous; asterisks TFBS-

cons (in a conserved region predicted to be a transcription factor

binding site); squares with an X, MCS44 placental (in a region highly

conserved in placental mammals)
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the second sample as the replication sample, we chose to

perform a meta-analysis since this has been shown to be

more powerful than to use one sample for discovery and

the other for replication (Skol et al. 2006). Although the

samples are comparable in terms of phenotypes and genetic

origin, there might be sample-specific differences that we

would not be able to control for in a mega-analysis, which

is why we chose to perform meta-analyses rather than

mega-analyses to correct for sample-specific differences.

We stress here that the integration of findings from the two

samples should be valid as the samples were quite homo-

geneous from a population perspective, they were geno-

typed and imputed on the same platform, and the imaging

phenotyping and speed tasks were highly comparable. Still,

between-site procedural differences did exist, particularly

for the imaging procedures. Another point to consider

critically is the use of Fisher’s combined P value method,

which might produce inflated P values when the test

statistics are correlated. We took measures to counteract

this effect, such as matching the directionality of effect and

including only those SNPs with meta P values\ 0.05 prior

to testing, and only keeping Fisher P values smaller than

the test P values. For the gene set-based analysis, the

method can be prone to bias due to gene set size, gene

length, and LD patterns (Wang et al. 2011). To address the

issue of variable numbers of SNPs and LD around the

markers we applied a modified Sidak’s correction (Saccone

et al. 2007) when scoring the genes, which is highly cor-

related with the gold standard of permutation correction.

We pruned our test gene sets to avoid potential intergenic-

LD biasing the test statistics. In addition, a non-random

distribution of gene size with respect to function has

Fig. 3 Locus-specific plots highlighting the gene(s) represented by

SNPs reaching a genome-wide significance threshold of meta P value

B10-6 for processing speed. a–f Each plot shows the -log10 P value

(Y-axis) of SNPs (localized in the genic region) arranged according to

their chromosomal positions (X-axis). The locus-specific plots include

the genes SSPO, ZNF862 and ATP6V0E2 (a), ITPR2 (b), SLC15A5
(c), MEGF10 (d), KLF13 (f), and COL5A1 (g). The blue lines show

estimated recombination rates calculated from the HapMap data. The

arrows represent the genomic locations of genes based on the NCBI

Build 37 human assembly. SNP color represents LD with the SNP

showing highest association in the locus. The SNP annotation is

represented as follows: circles no annotation; squares synonymous or

30 UTR; triangles non-synonymous; asterisks TFBScons (in a

conserved region predicted to be a transcription factor binding site);

squares with an X, MCS44 placental (in a region highly conserved in

placental mammals)

Fig. 4 Genotype means for the processing speed task measures in the

Betula and NCNG samples for the SNP rs6972739. The X-axis shows

the three genotypes and the Y-axis represents scores from the letter

digit substitution and digit symbol substitution tests in Betula and

NCNG samples, respectively. Error bars indicate one standard

deviation from the mean. Number of individuals in each sample that

were used to generate the plots: N = 360 for Betula and N = 220 for

NCNG
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previously been reported; for example, brain-expressed

genes are relatively large (Raychaudhuri et al. 2010). This

poses a challenge to the gene set-based analysis of GWAS

data sets, and we have no control for it in the present study.

Another limitation is that WM hyperintensities (WMHIs)

are common neuroradiological observations, in particular

in samples of older adults, with no obvious clinical or

functional implications e.g., (Söderlund et al. 2003). It has

been shown that incidental WMHIs might affect FA esti-

mates (Iverson et al. 2011). We did not control for WMHIs

in our study, which might be seen as a limitation. Finally,

the behavioral and imaging measures have limitations.

MRI-derived indices of WM microstructural coherence as

indexed by whole-brain FA are indirect measures, so the

observed associations could be influenced by additional

factors unrelated to or only partly related to brain WM.

Relatedly, with the exception of a targeted voxel-wise

analysis, we focused on a global index of WM integrity.

While there is data to suggest that this is a good proxy for

WM status in the brain e.g., (Salami et al. 2012; Sprooten

et al. 2013), there is also evidence for heterogeneity among

WM tracts in relation to genetic variation (Kochunov et al.

2015). By the latter view, we may well have missed

detecting genetic associations that are selective for certain

tracts. Similarly, although the letter–digit-/digit–symbol

substitution tasks are clearly tapping information process-

ing speed, other cognitive components such as working

memory capacity could also influence performance.

Table 2 Gene set enrichment

analysis of top ranked FA gene

sets in processing speed and

vice versa

Gene set FA gene sets in processing speed Processing speed gene sets in FA

Size NES NOM P value Validation Size NES NOM P value Validation

Ranked 1–50 47 0.84 0.848 n.d. 49 1.3 0.017 At 5 %

Ranked 1–100 96 0.9 0.812 n.d. 98 1.2 0.041 At 5 %

Ranked 1–150 143 0.86 0.917 n.d. 148 1.21 0.015 At 5 %

Ranked 1–250 241 0.87 0.953 n.d. 246 1.14 0.027 At 5 %

Ranked 1–500 486 1 0.511 n.d. 485 1.14 0.004 At 1 %

Ranked 1–750 735 1.01 0.441 n.d. 725 1.09 0.03 At 5 %

Ranked 1–1000 980 0.98 0.691 n.d. 966 1.09 0.013 At 5 %

Ranked 1–2000 1965 0.97 0.828 n.d. 1931 1.04 0.083 n.d.

Size number of genes in the set, NES normalized enrichment score, NOM P value nominal P value,

validation rank when tested along with one hundred random gene sets mimicking the test set in number of

genes in the set and number of SNPs in each gene, n.d. not determined

Values below significant threshold are in italics

Fig. 5 Box plot showing the distribution of FA values for the two

genotypes observed for the ZFPM2 SNP (rs149603240). FA values

(covaried for age, age2 and sex) are plotted on the Y-axis and the two

observed genotypes CC and TC on the X-axis. Number of individuals

included: N = 355 for Betula and N = 250 for NCNG
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In conclusion, the present analyses provide novel data on

the genetics of brain WM as well as processing speed, and in

particular highlight a key role of ZFPM2 and CSMD1 in

information processing in the brain. Considering the afore-

mentioned limitations, it will be necessary to validate these

findings by analyzing the same phenotypes in further samples.
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