001     281953
005     20240619091204.0
024 7 _ |a 10.1021/acsnano.5b07136
|2 doi
024 7 _ |a 1936-0851
|2 ISSN
024 7 _ |a 1936-086X
|2 ISSN
024 7 _ |a WOS:000370987400076
|2 WOS
024 7 _ |a altmetric:5637080
|2 altmetric
024 7 _ |a pmid:26859618
|2 pmid
037 _ _ |a FZJ-2016-01597
082 _ _ |a 540
100 1 _ |a Tran, Duy P.
|0 P:(DE-Juel1)136674
|b 0
245 _ _ |a Towards Intraoperative Detection of Disseminated Tumor Cells in Lymph Nodes with Silicon Nanowire Field Effect Transistors
260 _ _ |a Washington, DC
|c 2016
|b Soc.
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1456818622_17458
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a Within an hour, as little as one disseminated tumor cell (DTC) per lymph node can be quantitatively detected using an intraoperative biosensing platform based on silicon nanowire field-effect transistors (SiNW FET). It is also demonstrated that the integrated biosensing platform is able to detect the presence of circulating tumor cells (CTCs) in the blood of colorectal cancer patients. The presence of DTCs in lymph nodes and CTCs in peripheral blood is highly significant as it is strongly associated with poor patient prognosis. The SiNW FET sensing platform out-performed in both sensitivity and rapidity not only the current standard method based on pathological examination of tissue sections but also the emerging clinical gold standard based on molecular assays. The possibility to achieve accurate and highly sensitive analysis of the presence of DTCs in the lymphatics within the surgery time frame has the potential to spare cancer patients from an unnecessary secondary surgery, leading to reduced patient morbidity, improving their psychological wellbeing and reducing time spent in hospital. This study demonstrates the potential of nanoscale field-effect technology in clinical cancer diagnostics.
536 _ _ |a 523 - Controlling Configuration-Based Phenomena (POF3-523)
|0 G:(DE-HGF)POF3-523
|c POF3-523
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Winter, Marnie A.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Wolfrum, Bernhard
|0 P:(DE-Juel1)128745
|b 2
700 1 _ |a Stockmann, Regina
|0 P:(DE-Juel1)128733
|b 3
700 1 _ |a Yang, Chih-Tsung
|0 P:(DE-HGF)0
|b 4
700 1 _ |a P. Moghaddam, Mohammad
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Offenhäusser, Andreas
|0 P:(DE-Juel1)128713
|b 6
|e Corresponding author
700 1 _ |a Thierry, Benjamin
|0 P:(DE-HGF)0
|b 7
|e Corresponding author
773 _ _ |a 10.1021/acsnano.5b07136
|g p. acsnano.5b07136
|0 PERI:(DE-600)2383064-5
|n 2
|p 2357–2364
|t ACS nano
|v 10
|y 2016
|x 1936-086X
856 4 _ |u https://juser.fz-juelich.de/record/281953/files/acsnano.5b07136.pdf
|y Restricted
856 4 _ |x icon
|u https://juser.fz-juelich.de/record/281953/files/acsnano.5b07136.gif?subformat=icon
|y Restricted
856 4 _ |x icon-1440
|u https://juser.fz-juelich.de/record/281953/files/acsnano.5b07136.jpg?subformat=icon-1440
|y Restricted
856 4 _ |x icon-180
|u https://juser.fz-juelich.de/record/281953/files/acsnano.5b07136.jpg?subformat=icon-180
|y Restricted
856 4 _ |x icon-640
|u https://juser.fz-juelich.de/record/281953/files/acsnano.5b07136.jpg?subformat=icon-640
|y Restricted
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/281953/files/acsnano.5b07136.pdf?subformat=pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:281953
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)128745
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)128733
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)128713
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-523
|2 G:(DE-HGF)POF3-500
|v Controlling Configuration-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2016
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACS NANO : 2014
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b ACS NANO : 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a No Authors Fulltext
|0 StatID:(DE-HGF)0550
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ICS-8-20110106
|k ICS-8
|l Bioelektronik
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-8-20110106
|k PGI-8
|l Bioelektronik
|x 1
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ICS-8-20110106
980 _ _ |a I:(DE-Juel1)PGI-8-20110106
980 _ _ |a I:(DE-82)080009_20140620
981 _ _ |a I:(DE-Juel1)IBI-3-20200312
981 _ _ |a I:(DE-Juel1)PGI-8-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21