000281955 001__ 281955
000281955 005__ 20240712084522.0
000281955 0247_ $$2Handle$$a2128/9864
000281955 0247_ $$2URN$$aurn:nbn:de:0001-2016022955
000281955 0247_ $$2ISSN$$a1866-1793
000281955 020__ $$a978-3-95806-108-8
000281955 037__ $$aFZJ-2016-01599
000281955 1001_ $$0P:(DE-Juel1)130237$$aErmes, Markus$$b0$$eCorresponding author$$gmale$$ufzj
000281955 245__ $$aOptical near-field investigations of photonic structures for application in silicon-based thin-film solar cells$$f- 2015-01-29
000281955 260__ $$aJülich$$bForschungszentrum Jülich GmbH Zentralbibliothek, Verlag$$c2015
000281955 300__ $$avi, 157 S.
000281955 3367_ $$0PUB:(DE-HGF)11$$2PUB:(DE-HGF)$$aDissertation / PhD Thesis$$bphd$$mphd$$s1456758681_17959
000281955 3367_ $$0PUB:(DE-HGF)3$$2PUB:(DE-HGF)$$aBook$$mbook
000281955 3367_ $$02$$2EndNote$$aThesis
000281955 3367_ $$2DRIVER$$adoctoralThesis
000281955 3367_ $$2BibTeX$$aPHDTHESIS
000281955 3367_ $$2DataCite$$aOutput Types/Dissertation
000281955 3367_ $$2ORCID$$aDISSERTATION
000281955 4900_ $$aSchriften des Forschungszentrums Jülich Reihe Energie & Umwelt / Energy & Environment$$v299
000281955 502__ $$aRWTH Aachen, Diss., 2015$$bDr.$$cRWTH Aachen$$d2015
000281955 520__ $$aIn this thesis, light scattering and propagation inside a silicon-based thin-film solar cell is investigated using optical simulations based on the finite-difference time-domain method. The special focus in this thesis lies in the analysis of the influence of randomly textured surfaces on cell performance. Due to the random nature of these structures and their varying sizes, simulation domains have to be sufficiently large to have a statistically significant distribution of features. The investigations focus on three different areas: The first area is light scattering at different interfaces in transmission as well as reflection. These simulations are compared to results from an improved scalar scattering model proposed by Domin´e et al. [J. Appl. Phys. 107, p. 044504, 2010]. The agreementof both methods is very good, with the limits of the scalar model lyingin multiple interfaces and layers with a thickness below the peak-to-peak roughness of the surface. Secondly, the absorptance inside different hydrogenated amorphous and microcrystalline silicon layers is investigated for different structures; these include comparisons between conformal surfaces and surfaces as obtained in real devices by silicon growth. Further investigations in this area included simple stretching of the surfaces along different axes, as well as more complex modifications based on the scalar scattering theory; additionally, an amorphous/microcrystalline silicon solar cell is simulated and compared to experimental results to find limitations in the simulation approach. All of these simulations show a better performance for steeper features with a lateral size of about 500 nm. Additionally, the changes in topograhpy introduced by the silicon growth has a significant impact on cell performance. The last part of this thesis compares optical simulations to measurements of a scanning near-field optical microscope (SNOM). When comparing simulated intensities directly above a rough surface to measurements, it is found that the offset of the tip due to its finite physical size is the strongest influence, while light scattering at the tip has very little impact on (relative) intensity measurements.
000281955 536__ $$0G:(DE-HGF)POF3-121$$a121 - Solar cells of the next generation (POF3-121)$$cPOF3-121$$fPOF III$$x0
000281955 650_7 $$xDiss.
000281955 8564_ $$uhttps://juser.fz-juelich.de/record/281955/files/Energie_Umwelt_299.pdf$$yOpenAccess
000281955 8564_ $$uhttps://juser.fz-juelich.de/record/281955/files/Energie_Umwelt_299.gif?subformat=icon$$xicon$$yOpenAccess
000281955 8564_ $$uhttps://juser.fz-juelich.de/record/281955/files/Energie_Umwelt_299.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000281955 8564_ $$uhttps://juser.fz-juelich.de/record/281955/files/Energie_Umwelt_299.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000281955 8564_ $$uhttps://juser.fz-juelich.de/record/281955/files/Energie_Umwelt_299.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000281955 8564_ $$uhttps://juser.fz-juelich.de/record/281955/files/Energie_Umwelt_299.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000281955 909CO $$ooai:juser.fz-juelich.de:281955$$pdnbdelivery$$pVDB$$pdriver$$purn$$popen_access$$popenaire
000281955 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000281955 9141_ $$y2016
000281955 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130237$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000281955 9131_ $$0G:(DE-HGF)POF3-121$$1G:(DE-HGF)POF3-120$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lErneuerbare Energien$$vSolar cells of the next generation$$x0
000281955 920__ $$lyes
000281955 9201_ $$0I:(DE-Juel1)IEK-5-20101013$$kIEK-5$$lPhotovoltaik$$x0
000281955 9801_ $$aUNRESTRICTED
000281955 9801_ $$aFullTexts
000281955 980__ $$aphd
000281955 980__ $$aVDB
000281955 980__ $$abook
000281955 980__ $$aI:(DE-Juel1)IEK-5-20101013
000281955 980__ $$aUNRESTRICTED
000281955 981__ $$aI:(DE-Juel1)IMD-3-20101013