001     28257
005     20200402210448.0
024 7 _ |2 pmid
|a pmid:12594512
024 7 _ |2 DOI
|a 10.1038/nature01416
024 7 _ |2 WOS
|a WOS:000181044700047
024 7 _ |a altmetric:21809580
|2 altmetric
037 _ _ |a PreJuSER-28257
041 _ _ |a eng
082 _ _ |a 070
084 _ _ |2 WoS
|a Multidisciplinary Sciences
100 1 _ |a Hamm, H. W.
|b 0
|0 P:(DE-HGF)0
245 _ _ |a Architecture and material properties of diatom shells provide effective mechanical protection
260 _ _ |a London [u.a.]
|b Nature Publising Group
|c 2003
300 _ _ |a 841 - 843
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Nature
|x 0028-0836
|0 4484
|y 6925
|v 421
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a Diatoms are the major contributors to phytoplankton blooms in lakes and in the sea and hence are central in aquatic ecosystems and the global carbon cycle. All free-living diatoms differ from other phytoplankton groups in having silicified cell walls in the form of two 'shells' (the frustule) of manifold shape and intricate architecture whose function and role, if any, in contributing to the evolutionary success of diatoms is under debate. We explored the defence potential of the frustules as armour against predators by measuring their strength. Real and virtual loading tests (using calibrated glass microneedles and finite element analysis) were performed on centric and pennate diatom cells. Here we show that the frustules are remarkably strong by virtue of their architecture and the material properties of the diatom silica. We conclude that diatom frustules have evolved as mechanical protection for the cells because exceptional force is required to break them. The evolutionary arms race between diatoms and their specialized predators will have had considerable influence in structuring pelagic food webs and biogeochemical cycles.
536 _ _ |a Kondensierte Materie
|c M02
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK242
|x 0
588 _ _ |a Dataset connected to Web of Science, Pubmed
650 _ 2 |2 MeSH
|a Animals
650 _ 2 |2 MeSH
|a Biomechanics
650 _ 2 |2 MeSH
|a Calibration
650 _ 2 |2 MeSH
|a Carbon: analysis
650 _ 2 |2 MeSH
|a Cell Wall: chemistry
650 _ 2 |2 MeSH
|a Cell Wall: physiology
650 _ 2 |2 MeSH
|a Diatoms: chemistry
650 _ 2 |2 MeSH
|a Diatoms: classification
650 _ 2 |2 MeSH
|a Diatoms: cytology
650 _ 2 |2 MeSH
|a Diatoms: physiology
650 _ 2 |2 MeSH
|a Food Chain
650 _ 2 |2 MeSH
|a Glass
650 _ 2 |2 MeSH
|a Needles
650 _ 2 |2 MeSH
|a Phytoplankton: chemistry
650 _ 2 |2 MeSH
|a Phytoplankton: classification
650 _ 2 |2 MeSH
|a Phytoplankton: cytology
650 _ 2 |2 MeSH
|a Phytoplankton: physiology
650 _ 2 |2 MeSH
|a Silicon Dioxide
650 _ 2 |2 MeSH
|a Species Specificity
650 _ 7 |0 7440-44-0
|2 NLM Chemicals
|a Carbon
650 _ 7 |0 7631-86-9
|2 NLM Chemicals
|a Silicon Dioxide
650 _ 7 |a J
|2 WoSType
700 1 _ |a Merkel, R.
|b 1
|u FZJ
|0 P:(DE-Juel1)128833
700 1 _ |a Springer, O.
|b 2
|0 P:(DE-HGF)0
700 1 _ |a Jurkojc, P.
|b 3
|0 P:(DE-HGF)0
700 1 _ |a Maier, C.
|b 4
|0 P:(DE-HGF)0
700 1 _ |a Prechtel, K.
|b 5
|0 P:(DE-HGF)0
700 1 _ |a Smetacek, V.
|b 6
|0 P:(DE-HGF)0
773 _ _ |a 10.1038/nature01416
|g Vol. 421, p. 841 - 843
|p 841 - 843
|q 421<841 - 843
|0 PERI:(DE-600)1413423-8
|t Nature
|v 421
|y 2003
|x 0028-0836
856 7 _ |u http://dx.doi.org/10.1038/nature01416
909 C O |o oai:juser.fz-juelich.de:28257
|p VDB
913 1 _ |k M02
|v Kondensierte Materie
|l Kondensierte Materie
|b Materie
|0 G:(DE-Juel1)FUEK242
|x 0
914 1 _ |y 2003
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |k ISG-4
|l Institut für biologisch-anorganische Grenzflächen
|d 31.12.2001
|g ISG
|0 I:(DE-Juel1)VDB44
|x 0
970 _ _ |a VDB:(DE-Juel1)21566
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)ICS-7-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBI-2-20200312
981 _ _ |a I:(DE-Juel1)ICS-7-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21