000282984 001__ 282984
000282984 005__ 20220930130057.0
000282984 0247_ $$2doi$$a10.1016/j.biombioe.2016.02.010
000282984 0247_ $$2ISSN$$a0961-9534
000282984 0247_ $$2ISSN$$a1873-2909
000282984 0247_ $$2Handle$$a2128/9907
000282984 0247_ $$2WOS$$aWOS:000374235500002
000282984 037__ $$aFZJ-2016-01711
000282984 041__ $$aEnglish
000282984 082__ $$a630
000282984 1001_ $$0P:(DE-Juel1)161129$$aNabel, Moritz$$b0
000282984 245__ $$aEnergizing marginal soils – The establishment of the energy crop Sida hermaphrodita as dependent on digestate fertilization, NPK, and legume intercropping
000282984 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2016
000282984 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1456816340_17454
000282984 3367_ $$2DataCite$$aOutput Types/Journal article
000282984 3367_ $$00$$2EndNote$$aJournal Article
000282984 3367_ $$2BibTeX$$aARTICLE
000282984 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000282984 3367_ $$2DRIVER$$aarticle
000282984 520__ $$aGrowing energy crops in marginal, nutrient-deficient soils is a more sustainable alternative to conventional cultivation. The use of energy-intensive synthetic fertilizers needs to be reduced, preferably via closed nutrient loops in the biomass production cycle. In the present study based on the first growing season of a mesocosm experiment using large bins outdoors, we evaluated the potential of the energy plant Sida hermaphrodita to grow in a marginal sandy soil. We applied different fertilization treatments using either digestate from biogas production or a commercial mineral NPK-fertilizer. To further increase independence from synthetically produced N-fertilizers, the legume plant Medicago sativa was intercropped to introduce atmospherically fixed nitrogen and potentially facilitate the production of additional S. hermaphrodita biomass. We found digestate to be the best performing fertilizer because it produced similar yields as the NPK fertilization but minimized nitrate leaching. Legume intercropping increased the total biomass yield by more than 100% compared to S. hermaphrodita single cropping in the fertilized variants. However, it negatively influenced the performance of S. hermaphrodita in the following year. We conclude that a successful establishment of S. hermaphrodita for biomass production in marginal soils is possible and digestate application formed the best fertilization method when considering a range of aspects including overall yield, nitrate leaching, nitrogen fixation of M. sativa, and sustainability over time.
000282984 536__ $$0G:(DE-HGF)POF3-582$$a582 - Plant Science (POF3-582)$$cPOF3-582$$fPOF III$$x0
000282984 588__ $$aDataset connected to CrossRef
000282984 7001_ $$0P:(DE-Juel1)129409$$aTemperton, Vicky$$b1
000282984 7001_ $$0P:(DE-Juel1)129384$$aPoorter, Hendrik$$b2
000282984 7001_ $$0P:(DE-Juel1)129567$$aLücke, Andreas$$b3
000282984 7001_ $$0P:(DE-Juel1)129475$$aJablonowski, Nicolai D.$$b4$$eCorresponding author
000282984 773__ $$0PERI:(DE-600)1496404-1$$a10.1016/j.biombioe.2016.02.010$$gVol. 87, p. 9 - 16$$p9 - 16$$tBiomass and bioenergy$$v87$$x0961-9534$$y2016
000282984 8564_ $$uhttps://juser.fz-juelich.de/record/282984/files/Nabel_EtAl_2016.pdf$$yOpenAccess
000282984 8564_ $$uhttps://juser.fz-juelich.de/record/282984/files/Nabel_EtAl_2016.gif?subformat=icon$$xicon$$yOpenAccess
000282984 8564_ $$uhttps://juser.fz-juelich.de/record/282984/files/Nabel_EtAl_2016.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000282984 8564_ $$uhttps://juser.fz-juelich.de/record/282984/files/Nabel_EtAl_2016.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000282984 8564_ $$uhttps://juser.fz-juelich.de/record/282984/files/Nabel_EtAl_2016.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000282984 8564_ $$uhttps://juser.fz-juelich.de/record/282984/files/Nabel_EtAl_2016.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000282984 8767_ $$92016-02-16$$d2016-02-17$$eHybrid-OA$$jZahlung erfolgt
000282984 909CO $$ooai:juser.fz-juelich.de:282984$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000282984 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161129$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000282984 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000282984 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129384$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000282984 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129567$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000282984 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129475$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000282984 9131_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0
000282984 9141_ $$y2016
000282984 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000282984 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000282984 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000282984 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBIOMASS BIOENERG : 2014
000282984 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000282984 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000282984 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000282984 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000282984 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000282984 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000282984 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000282984 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000282984 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
000282984 9801_ $$aUNRESTRICTED
000282984 9801_ $$aFullTexts
000282984 980__ $$ajournal
000282984 980__ $$aVDB
000282984 980__ $$aUNRESTRICTED
000282984 980__ $$aI:(DE-Juel1)IBG-2-20101118
000282984 980__ $$aAPC