000282984 001__ 282984 000282984 005__ 20220930130057.0 000282984 0247_ $$2doi$$a10.1016/j.biombioe.2016.02.010 000282984 0247_ $$2ISSN$$a0961-9534 000282984 0247_ $$2ISSN$$a1873-2909 000282984 0247_ $$2Handle$$a2128/9907 000282984 0247_ $$2WOS$$aWOS:000374235500002 000282984 037__ $$aFZJ-2016-01711 000282984 041__ $$aEnglish 000282984 082__ $$a630 000282984 1001_ $$0P:(DE-Juel1)161129$$aNabel, Moritz$$b0 000282984 245__ $$aEnergizing marginal soils – The establishment of the energy crop Sida hermaphrodita as dependent on digestate fertilization, NPK, and legume intercropping 000282984 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2016 000282984 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1456816340_17454 000282984 3367_ $$2DataCite$$aOutput Types/Journal article 000282984 3367_ $$00$$2EndNote$$aJournal Article 000282984 3367_ $$2BibTeX$$aARTICLE 000282984 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000282984 3367_ $$2DRIVER$$aarticle 000282984 520__ $$aGrowing energy crops in marginal, nutrient-deficient soils is a more sustainable alternative to conventional cultivation. The use of energy-intensive synthetic fertilizers needs to be reduced, preferably via closed nutrient loops in the biomass production cycle. In the present study based on the first growing season of a mesocosm experiment using large bins outdoors, we evaluated the potential of the energy plant Sida hermaphrodita to grow in a marginal sandy soil. We applied different fertilization treatments using either digestate from biogas production or a commercial mineral NPK-fertilizer. To further increase independence from synthetically produced N-fertilizers, the legume plant Medicago sativa was intercropped to introduce atmospherically fixed nitrogen and potentially facilitate the production of additional S. hermaphrodita biomass. We found digestate to be the best performing fertilizer because it produced similar yields as the NPK fertilization but minimized nitrate leaching. Legume intercropping increased the total biomass yield by more than 100% compared to S. hermaphrodita single cropping in the fertilized variants. However, it negatively influenced the performance of S. hermaphrodita in the following year. We conclude that a successful establishment of S. hermaphrodita for biomass production in marginal soils is possible and digestate application formed the best fertilization method when considering a range of aspects including overall yield, nitrate leaching, nitrogen fixation of M. sativa, and sustainability over time. 000282984 536__ $$0G:(DE-HGF)POF3-582$$a582 - Plant Science (POF3-582)$$cPOF3-582$$fPOF III$$x0 000282984 588__ $$aDataset connected to CrossRef 000282984 7001_ $$0P:(DE-Juel1)129409$$aTemperton, Vicky$$b1 000282984 7001_ $$0P:(DE-Juel1)129384$$aPoorter, Hendrik$$b2 000282984 7001_ $$0P:(DE-Juel1)129567$$aLücke, Andreas$$b3 000282984 7001_ $$0P:(DE-Juel1)129475$$aJablonowski, Nicolai D.$$b4$$eCorresponding author 000282984 773__ $$0PERI:(DE-600)1496404-1$$a10.1016/j.biombioe.2016.02.010$$gVol. 87, p. 9 - 16$$p9 - 16$$tBiomass and bioenergy$$v87$$x0961-9534$$y2016 000282984 8564_ $$uhttps://juser.fz-juelich.de/record/282984/files/Nabel_EtAl_2016.pdf$$yOpenAccess 000282984 8564_ $$uhttps://juser.fz-juelich.de/record/282984/files/Nabel_EtAl_2016.gif?subformat=icon$$xicon$$yOpenAccess 000282984 8564_ $$uhttps://juser.fz-juelich.de/record/282984/files/Nabel_EtAl_2016.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess 000282984 8564_ $$uhttps://juser.fz-juelich.de/record/282984/files/Nabel_EtAl_2016.jpg?subformat=icon-180$$xicon-180$$yOpenAccess 000282984 8564_ $$uhttps://juser.fz-juelich.de/record/282984/files/Nabel_EtAl_2016.jpg?subformat=icon-640$$xicon-640$$yOpenAccess 000282984 8564_ $$uhttps://juser.fz-juelich.de/record/282984/files/Nabel_EtAl_2016.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000282984 8767_ $$92016-02-16$$d2016-02-17$$eHybrid-OA$$jZahlung erfolgt 000282984 909CO $$ooai:juser.fz-juelich.de:282984$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery 000282984 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161129$$aForschungszentrum Jülich GmbH$$b0$$kFZJ 000282984 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich GmbH$$b1$$kFZJ 000282984 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129384$$aForschungszentrum Jülich GmbH$$b2$$kFZJ 000282984 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129567$$aForschungszentrum Jülich GmbH$$b3$$kFZJ 000282984 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129475$$aForschungszentrum Jülich GmbH$$b4$$kFZJ 000282984 9131_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0 000282984 9141_ $$y2016 000282984 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000282984 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews 000282984 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 000282984 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBIOMASS BIOENERG : 2014 000282984 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000282984 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000282984 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000282984 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000282984 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences 000282984 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database 000282984 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000282984 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000282984 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0 000282984 9801_ $$aUNRESTRICTED 000282984 9801_ $$aFullTexts 000282984 980__ $$ajournal 000282984 980__ $$aVDB 000282984 980__ $$aUNRESTRICTED 000282984 980__ $$aI:(DE-Juel1)IBG-2-20101118 000282984 980__ $$aAPC