000283029 001__ 283029
000283029 005__ 20250129092436.0
000283029 037__ $$aFZJ-2016-01712
000283029 041__ $$aEnglish
000283029 1001_ $$0P:(DE-Juel1)161528$$aDurini, Daniel$$b0$$eCorresponding author$$ufzj
000283029 1112_ $$a607. WE-Heraeus-Seminar: Semiconductor detectors in astronomy, medicine, particle physics and photon science$$cBad Honnef$$d2016-02-15 - 2016-02-17$$wGermany
000283029 245__ $$aDark current performance of an analog SiPM array under irradiation with cold neutrons
000283029 260__ $$c2016
000283029 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1457440720_1125$$xOther
000283029 3367_ $$033$$2EndNote$$aConference Paper
000283029 3367_ $$2DataCite$$aOutput Types/Conference Poster
000283029 3367_ $$2DRIVER$$aconferenceObject
000283029 3367_ $$2ORCID$$aCONFERENCE_POSTER
000283029 3367_ $$2BibTeX$$aINPROCEEDINGS
000283029 520__ $$aResearch on novel approaches concerning scintillation based solid-state detectors to be used in small angle neutron scattering (SANS) experiments [1] has been triggered through low world-wide availability of the 3He gas [2], which has been the detection material of choice for most neutron detection tasks. The active area sizes of such detectors might vary between 1 m² (sometimes smaller) and 30 m² or more, depending on the instrument design. It is reasonable to stress the enormous readout and data rate concerned complexities accompanying a pixelated solid-state approach for SANS scintillator detectors, if a single “pixel” size of some mm² is considered in neutron detectors with active areas of several tens of square meters. Nevertheless, in SANS instruments requiring active areas up to 1 m², the approach based on an indirect detection of impinging cold and thermal neutrons via pixelated scintillator detectors, where the size of each “pixel” would be defined only by the dispersion of visible photons produced within the overlying scintillator material, this approach becomes feasible. An interesting candidate for the photodetector part in these detectors could be an array of analog silicon photomultipliers (SiPM). It would yield the possibility of single photon counting, low power consumption, a space resolution of at least 3×3 mm² (or less), and the possibility of acceptable photodetection performance even in presence of high magnetic fields. The main risk defined so far for using this technology in SANS scintillation detectors is their performance in hard radiation environments: in this case, under the irradiation of thermal or cold neutrons. We investigated the dark signal and breakdown voltage performances of a 12x12 array of SensL Series C SiPMs with an active area of 3x3 mm² under irradiation with cold neutrons (lambda = 5 Å, and the main neutron flux of 108 n·s-1cm-2) up to a dose of 2×1012 n·cm-2. The SiPM detectors were at all times fully operational, and the measurements were performed in-situ.[1] D. L. Price and K. Sköld "Introduction to Neutron Scattering", Methods in Experimental Physics, Volume 23, Part A, pp. 1–97, Academic Press (1986)[2] U.S. Government Accountability Office (GAO). Neutron Detectors. Alternatives to using helium-3. Technology assessment. Report to Congressional Requesters, GAO—11-753 (2011)
000283029 536__ $$0G:(DE-HGF)POF3-632$$a632 - Detector technology and systems (POF3-632)$$cPOF3-632$$fPOF III$$x0
000283029 536__ $$0G:(DE-HGF)POF3-6G15$$a6G15 - FRM II / MLZ (POF3-6G15)$$cPOF3-6G15$$fPOF III$$x1
000283029 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x2
000283029 65027 $$0V:(DE-MLZ)SciArea-220$$2V:(DE-HGF)$$aInstrument and Method Development$$x0
000283029 65017 $$0V:(DE-MLZ)GC-2002-2016$$2V:(DE-HGF)$$aInstrument and Method Development$$x1
000283029 65017 $$0V:(DE-MLZ)GC-180$$2V:(DE-HGF)$$aOthers$$x0
000283029 693__ $$0EXP:(DE-MLZ)KWS1-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS1-20140101$$6EXP:(DE-MLZ)NL3b-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eKWS-1: Small angle scattering diffractometer$$fNL3b$$x0
000283029 7001_ $$0P:(DE-Juel1)133931$$aRongen, Heinz$$b1$$ufzj
000283029 7001_ $$0P:(DE-Juel1)130646$$aFrielinghaus, Henrich$$b2$$ufzj
000283029 7001_ $$0P:(DE-Juel1)144382$$aFeoktystov, Artem$$b3$$ufzj
000283029 7001_ $$0P:(DE-Juel1)142562$$avan Waasen, Stefan$$b4$$ufzj
000283029 909CO $$ooai:juser.fz-juelich.de:283029$$pVDB$$pVDB:MLZ
000283029 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161528$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000283029 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133931$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000283029 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130646$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000283029 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144382$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000283029 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142562$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000283029 9131_ $$0G:(DE-HGF)POF3-632$$1G:(DE-HGF)POF3-630$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMaterie und Technologie$$vDetector technology and systems$$x0
000283029 9131_ $$0G:(DE-HGF)POF3-6G15$$1G:(DE-HGF)POF3-6G0$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G15$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vFRM II / MLZ$$x1
000283029 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x2
000283029 9141_ $$y2016
000283029 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000283029 920__ $$lyes
000283029 9201_ $$0I:(DE-Juel1)ZEA-2-20090406$$kZEA-2$$lZentralinstitut für Elektronik$$x0
000283029 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS (München) ; Jülich Centre for Neutron Science JCNS (München) ; JCNS-FRM-II$$lJCNS-FRM-II$$x1
000283029 980__ $$aposter
000283029 980__ $$aVDB
000283029 980__ $$aUNRESTRICTED
000283029 980__ $$aI:(DE-Juel1)ZEA-2-20090406
000283029 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000283029 981__ $$aI:(DE-Juel1)PGI-4-20110106
000283029 981__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218