001     283029
005     20250129092436.0
037 _ _ |a FZJ-2016-01712
041 _ _ |a English
100 1 _ |a Durini, Daniel
|0 P:(DE-Juel1)161528
|b 0
|e Corresponding author
|u fzj
111 2 _ |a 607. WE-Heraeus-Seminar: Semiconductor detectors in astronomy, medicine, particle physics and photon science
|c Bad Honnef
|d 2016-02-15 - 2016-02-17
|w Germany
245 _ _ |a Dark current performance of an analog SiPM array under irradiation with cold neutrons
260 _ _ |c 2016
336 7 _ |a Poster
|b poster
|m poster
|0 PUB:(DE-HGF)24
|s 1457440720_1125
|2 PUB:(DE-HGF)
|x Other
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Output Types/Conference Poster
|2 DataCite
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a CONFERENCE_POSTER
|2 ORCID
336 7 _ |a INPROCEEDINGS
|2 BibTeX
520 _ _ |a Research on novel approaches concerning scintillation based solid-state detectors to be used in small angle neutron scattering (SANS) experiments [1] has been triggered through low world-wide availability of the 3He gas [2], which has been the detection material of choice for most neutron detection tasks. The active area sizes of such detectors might vary between 1 m² (sometimes smaller) and 30 m² or more, depending on the instrument design. It is reasonable to stress the enormous readout and data rate concerned complexities accompanying a pixelated solid-state approach for SANS scintillator detectors, if a single “pixel” size of some mm² is considered in neutron detectors with active areas of several tens of square meters. Nevertheless, in SANS instruments requiring active areas up to 1 m², the approach based on an indirect detection of impinging cold and thermal neutrons via pixelated scintillator detectors, where the size of each “pixel” would be defined only by the dispersion of visible photons produced within the overlying scintillator material, this approach becomes feasible. An interesting candidate for the photodetector part in these detectors could be an array of analog silicon photomultipliers (SiPM). It would yield the possibility of single photon counting, low power consumption, a space resolution of at least 3×3 mm² (or less), and the possibility of acceptable photodetection performance even in presence of high magnetic fields. The main risk defined so far for using this technology in SANS scintillation detectors is their performance in hard radiation environments: in this case, under the irradiation of thermal or cold neutrons. We investigated the dark signal and breakdown voltage performances of a 12x12 array of SensL Series C SiPMs with an active area of 3x3 mm² under irradiation with cold neutrons (lambda = 5 Å, and the main neutron flux of 108 n·s-1cm-2) up to a dose of 2×1012 n·cm-2. The SiPM detectors were at all times fully operational, and the measurements were performed in-situ.[1] D. L. Price and K. Sköld "Introduction to Neutron Scattering", Methods in Experimental Physics, Volume 23, Part A, pp. 1–97, Academic Press (1986)[2] U.S. Government Accountability Office (GAO). Neutron Detectors. Alternatives to using helium-3. Technology assessment. Report to Congressional Requesters, GAO—11-753 (2011)
536 _ _ |a 632 - Detector technology and systems (POF3-632)
|0 G:(DE-HGF)POF3-632
|c POF3-632
|f POF III
|x 0
536 _ _ |0 G:(DE-HGF)POF3-6G15
|f POF III
|x 1
|c POF3-6G15
|a 6G15 - FRM II / MLZ (POF3-6G15)
536 _ _ |a 6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)
|0 G:(DE-HGF)POF3-6G4
|c POF3-623
|f POF III
|x 2
650 2 7 |a Instrument and Method Development
|0 V:(DE-MLZ)SciArea-220
|2 V:(DE-HGF)
|x 0
650 1 7 |a Instrument and Method Development
|0 V:(DE-MLZ)GC-2002-2016
|2 V:(DE-HGF)
|x 1
650 1 7 |a Others
|0 V:(DE-MLZ)GC-180
|2 V:(DE-HGF)
|x 0
693 _ _ |a Forschungs-Neutronenquelle Heinz Maier-Leibnitz
|e KWS-1: Small angle scattering diffractometer
|f NL3b
|1 EXP:(DE-MLZ)FRMII-20140101
|0 EXP:(DE-MLZ)KWS1-20140101
|5 EXP:(DE-MLZ)KWS1-20140101
|6 EXP:(DE-MLZ)NL3b-20140101
|x 0
700 1 _ |a Rongen, Heinz
|0 P:(DE-Juel1)133931
|b 1
|u fzj
700 1 _ |a Frielinghaus, Henrich
|0 P:(DE-Juel1)130646
|b 2
|u fzj
700 1 _ |a Feoktystov, Artem
|0 P:(DE-Juel1)144382
|b 3
|u fzj
700 1 _ |a van Waasen, Stefan
|0 P:(DE-Juel1)142562
|b 4
|u fzj
909 C O |o oai:juser.fz-juelich.de:283029
|p VDB:MLZ
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)161528
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)133931
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)130646
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)144382
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)142562
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Materie und Technologie
|1 G:(DE-HGF)POF3-630
|0 G:(DE-HGF)POF3-632
|2 G:(DE-HGF)POF3-600
|v Detector technology and systems
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
913 1 _ |a DE-HGF
|9 G:(DE-HGF)POF3-6G15
|x 1
|4 G:(DE-HGF)POF
|v FRM II / MLZ
|1 G:(DE-HGF)POF3-6G0
|0 G:(DE-HGF)POF3-6G15
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-600
|b Forschungsbereich Materie
|l Großgeräte: Materie
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF3-620
|0 G:(DE-HGF)POF3-623
|2 G:(DE-HGF)POF3-600
|v Facility topic: Neutrons for Research on Condensed Matter
|9 G:(DE-HGF)POF3-6G4
|x 2
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2016
915 _ _ |a No Authors Fulltext
|0 StatID:(DE-HGF)0550
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ZEA-2-20090406
|k ZEA-2
|l Zentralinstitut für Elektronik
|x 0
920 1 _ |0 I:(DE-Juel1)JCNS-FRM-II-20110218
|k JCNS (München) ; Jülich Centre for Neutron Science JCNS (München) ; JCNS-FRM-II
|l JCNS-FRM-II
|x 1
980 _ _ |a poster
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ZEA-2-20090406
980 _ _ |a I:(DE-Juel1)JCNS-FRM-II-20110218
981 _ _ |a I:(DE-Juel1)PGI-4-20110106
981 _ _ |a I:(DE-Juel1)JCNS-FRM-II-20110218


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21