000283055 001__ 283055
000283055 005__ 20240712100958.0
000283055 0247_ $$2Handle$$a2128/10014
000283055 0247_ $$2ISSN$$a1866-1793
000283055 020__ $$a978-3-95806-121-7
000283055 037__ $$aFZJ-2016-01737
000283055 041__ $$aEnglish
000283055 1001_ $$0P:(DE-Juel1)145715$$aWu, Cheng$$b0$$eCorresponding author$$ufzj
000283055 245__ $$aEmissions of Biogenic Volatile Organic Compounds and Ozone Balance under Future Climate Conditions$$f- 2016-03-18
000283055 260__ $$aJülich$$bForschungszentrum Jülich GmbH Zentralbibliothek, Verlag$$c2016
000283055 300__ $$aVI, 93 S.
000283055 3367_ $$0PUB:(DE-HGF)11$$2PUB:(DE-HGF)$$aDissertation / PhD Thesis$$bphd$$mphd$$s1458293184_9150
000283055 3367_ $$0PUB:(DE-HGF)3$$2PUB:(DE-HGF)$$aBook$$mbook
000283055 3367_ $$02$$2EndNote$$aThesis
000283055 3367_ $$2DRIVER$$adoctoralThesis
000283055 3367_ $$2BibTeX$$aPHDTHESIS
000283055 3367_ $$2DataCite$$aOutput Types/Dissertation
000283055 3367_ $$2ORCID$$aDISSERTATION
000283055 4900_ $$aSchriften des Forschungszentrums Jülich Reihe Energie & Umwelt / Energy & Environment$$v308
000283055 502__ $$aRWTH Aachen, Diss., 2015$$bDr.$$cRWTH Aachen$$d2015
000283055 520__ $$aOzone (O$_{3}$) is a phytotoxic trace gas in the troposphere where it is photochemically produced from volatile organic compounds (VOCs) and nitrogen oxides (NO$_{x}$ = NO + NO$_{2}$). The dominant sink of O$_{3}$ in the air over areas with dense plant cover is dry deposition on plant surfaces. However, plants canalso contribute to photochemical O$_{3}$ formation because they emit biogenic VOCs (BVOCs). In this study, the role of vegetation for tropospheric ozone balance was investigated by consideringthe following processes: O$_{3}$ depletion by dry deposition on plant surfaces, O$_{3}$ depletion by gas phase reactions with plant emitted BVOCs, and photochemical O$_{3}$ production from BVOCs. Furthermore, drought and heat stress were applied to the plants, and possible impacts of these stresses on plant performance and on the tropospheric ozone balance were investigated. Dry deposition of O$_{3}$ was dominated by O$_{3}$ uptake through the plants stomata with negligible losses on cuticle and stem. For strong BVOC emitter, O$_{3}$ destruction by gas phase reactions with BVOCs wassignificant at low NO$_{x}$ conditions. Switching from low NOx to high NO$_{x}$ conditions led to O$_{3}$ production. A ratio of O$_{3}$ formation rates over BVOC loss rates was measured for $\alpha$-pinene as single BVOC and for BVOC mixtures emitted from real plants. For O$_{3}$ formation under BVOC limited conditions, this ratio was in the range of 2–3 ppb/ppb. The ratio of O$_{3}$ uptake/BVOC emission reflects the capability of aplant as a potential source of O$_{3}$, while NO$_{x}$ concentration and BVOC/NO$_{x}$ ratio determine whether the emitted BVOCs act as an additional sink or a source of O$_{3}$. O$_{3}$ uptake rates and BVOC emission rates are affected by environmental variables such as temperature, light intensity and stresses to plants. The impacts of them are different and thus the capability of a plant to be a source of O$_{3}$ is also affected by these variables. The focus of this work was the evaluation of the impact of drought and heat stress because future climate change will bring more and intense heat waves and elongated drought periods. With the application of moderate drought, the capability of a plant to be a source of O$_{3}$ increased; under conditions of severe drought the impact of plants in the O$_{3}$ balance decreased to almost zero. Heat stress also changes the capability of the plant to be a source of O$_{3}$. However, this change depends on the basic emission mechanisms of BVOCs and the severity of stress.
000283055 536__ $$0G:(DE-HGF)POF3-899$$a899 - ohne Topic (POF3-899)$$cPOF3-899$$fPOF III$$x0
000283055 650_7 $$xDiss.
000283055 8564_ $$uhttps://juser.fz-juelich.de/record/283055/files/Energie_Umwelt_308.pdf$$yOpenAccess
000283055 8564_ $$uhttps://juser.fz-juelich.de/record/283055/files/Energie_Umwelt_308.gif?subformat=icon$$xicon$$yOpenAccess
000283055 8564_ $$uhttps://juser.fz-juelich.de/record/283055/files/Energie_Umwelt_308.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000283055 8564_ $$uhttps://juser.fz-juelich.de/record/283055/files/Energie_Umwelt_308.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000283055 8564_ $$uhttps://juser.fz-juelich.de/record/283055/files/Energie_Umwelt_308.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000283055 8564_ $$uhttps://juser.fz-juelich.de/record/283055/files/Energie_Umwelt_308.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000283055 909CO $$ooai:juser.fz-juelich.de:283055$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000283055 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000283055 9141_ $$y2016
000283055 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145715$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000283055 9131_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000283055 920__ $$lyes
000283055 9201_ $$0I:(DE-Juel1)IEK-8-20101013$$kIEK-8$$lTroposphäre$$x0
000283055 9801_ $$aUNRESTRICTED
000283055 9801_ $$aFullTexts
000283055 980__ $$aphd
000283055 980__ $$aVDB
000283055 980__ $$aUNRESTRICTED
000283055 980__ $$abook
000283055 980__ $$aI:(DE-Juel1)IEK-8-20101013
000283055 981__ $$aI:(DE-Juel1)ICE-3-20101013