000283061 001__ 283061
000283061 005__ 20210316082426.0
000283061 0247_ $$2Handle$$a2128/10017
000283061 0247_ $$2ISSN$$a1866-1807
000283061 020__ $$a978-3-95806-115-6
000283061 037__ $$aFZJ-2016-01743
000283061 041__ $$aEnglish
000283061 1001_ $$0P:(DE-Juel1)141736$$aSchweflinghaus, Benedikt Johannes$$b0$$eCorresponding author$$gmale$$ufzj
000283061 245__ $$aFirst-principles investigation of inelastic magnetic excitations in nanostructures deposited on surfaces$$f- 2016-03-18
000283061 260__ $$aJülich$$bForschungszentrum Jülich GmbH Zentralbibliothek, Verlag$$c2016
000283061 300__ $$aV, 204 S.
000283061 3367_ $$0PUB:(DE-HGF)11$$2PUB:(DE-HGF)$$aDissertation / PhD Thesis$$bphd$$mphd$$s1458308728_18563
000283061 3367_ $$0PUB:(DE-HGF)3$$2PUB:(DE-HGF)$$aBook$$mbook
000283061 3367_ $$02$$2EndNote$$aThesis
000283061 3367_ $$2DRIVER$$adoctoralThesis
000283061 3367_ $$2BibTeX$$aPHDTHESIS
000283061 3367_ $$2DataCite$$aOutput Types/Dissertation
000283061 3367_ $$2ORCID$$aDISSERTATION
000283061 4900_ $$aSchriften des Forschungszentrums Jülich. Reihe Schlüsseltechnologien / Key Technologies$$v117
000283061 502__ $$aRWTH Aachen, Diss., 2015$$bDr.$$cRWTH Aachen$$d2015
000283061 520__ $$aThis thesis provides a theoretical description of inelastic scanning tunneling spectroscopy(ISTS), using a newly developed first-principles approach, by combining time-dependentdensity functional theory and many-body perturbation theory. The Korringa-Kohn-Rostoker Green function method is utilized, since it affords a real-space description of nanostructures, well-suited to the ISTS context. The central quantity is the electron self-energy, containing the interactions between the tunneling electrons and the spin excitations of the nanostructure. This self-energy leads to a renormalized electronic structure in the vacuum region above the adsorbate, which can be directly compared with the experimental ISTS signal, in the spirit of the Tersoff-Hamann approximation. As a first application, the developed method is applied to individual 3$\textit{d}$ transition-metal adatoms (Cr, Mn, Fe, and Co) deposited on metallic surfaces (Cu(111) and Pt(111)). The obtained magnetic excitation spectra for the regarded structures show differences in the excitation lifetime and the $\textit{g}$ shift, which can be attributed to the electronic structure of both, the adsorbate and the substrate. The calculated theoretical inelastic spectra reveal different non-trivial shapes of the excitation signatures, that vary with distance to the adsorbate. Observed asymmetries in these spectra could explain asymmetries in experimental findings. Furthermore, some spectra show additional bound states (satellites) that are not predictable by use of a simple Heisenberg model. For Fe and Co adatoms on Pt(111) the impact of hydrogen contamination on the excitation spectrum is investigated. In agreement to experimental findings, the presence or absence of hydrogen has a significant impact on the shape of the excitation spectrum. In addition to the above analysis, we also consider clusters of two or more 3$\textit{d}$ transition-metal adatoms deposited on the Cu(111) surface, investigating the resulting magnetic excitation spectra. The magnetic moments are coupled by the exchange interaction which results in different excitation modes of acoustic and optical character. The obtained excitation spectra depend on the regarded adatom species, the interatomic distance, the alignment of the magnetic moments, the number of involved atoms, as well as the arrangement on the surface. A comparison of a ring and a chain structure reveals the impact of geometrical topology on magnetic excitations. The semiclassical Landau-Lifshitz-Gilbert model is used to provide an insightful interpretation of the first-principles spin-excitation modes.
000283061 536__ $$0G:(DE-HGF)POF3-899$$a899 - ohne Topic (POF3-899)$$cPOF3-899$$fPOF III$$x0
000283061 650_7 $$xDiss.
000283061 8564_ $$uhttps://juser.fz-juelich.de/record/283061/files/Schluesseltech_117.pdf$$yOpenAccess
000283061 8564_ $$uhttps://juser.fz-juelich.de/record/283061/files/Schluesseltech_117.gif?subformat=icon$$xicon$$yOpenAccess
000283061 8564_ $$uhttps://juser.fz-juelich.de/record/283061/files/Schluesseltech_117.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000283061 8564_ $$uhttps://juser.fz-juelich.de/record/283061/files/Schluesseltech_117.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000283061 8564_ $$uhttps://juser.fz-juelich.de/record/283061/files/Schluesseltech_117.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000283061 909CO $$ooai:juser.fz-juelich.de:283061$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000283061 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000283061 9141_ $$y2016
000283061 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)141736$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000283061 9131_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000283061 920__ $$lyes
000283061 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
000283061 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
000283061 980__ $$aphd
000283061 980__ $$aVDB
000283061 980__ $$aUNRESTRICTED
000283061 980__ $$abook
000283061 980__ $$aI:(DE-Juel1)IAS-1-20090406
000283061 980__ $$aI:(DE-Juel1)PGI-1-20110106
000283061 9801_ $$aUNRESTRICTED
000283061 9801_ $$aFullTexts
000283061 981__ $$aI:(DE-Juel1)PGI-1-20110106