000283062 001__ 283062
000283062 005__ 20210129222245.0
000283062 0247_ $$2doi$$a10.1038/ncomms10620
000283062 0247_ $$2Handle$$a2128/10023
000283062 0247_ $$2WOS$$aWOS:000371020200009
000283062 0247_ $$2altmetric$$aaltmetric:5973360
000283062 0247_ $$2pmid$$apmid:26902332
000283062 037__ $$aFZJ-2016-01744
000283062 082__ $$a500
000283062 1001_ $$0P:(DE-HGF)0$$aKhajetoorians, A. A.$$b0$$eCorresponding author
000283062 245__ $$aTailoring the chiral magnetic interaction between two individual atoms
000283062 260__ $$aLondon$$bNature Publishing Group$$c2016
000283062 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1459232282_26031
000283062 3367_ $$2DataCite$$aOutput Types/Journal article
000283062 3367_ $$00$$2EndNote$$aJournal Article
000283062 3367_ $$2BibTeX$$aARTICLE
000283062 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000283062 3367_ $$2DRIVER$$aarticle
000283062 520__ $$aChiral magnets are a promising route towards dense magnetic storage technology due to their inherent nano-scale dimensions and energy efficient properties. Engineering chiral magnets requires atomic-level control of the magnetic exchange interactions, including the Dzyaloshinskii–Moriya interaction, which defines a rotational sense for the magnetization of two coupled magnetic moments. Here we show that the indirect conduction electron-mediated Dzyaloshinskii–Moriya interaction between two individual magnetic atoms on a metallic surface can be manipulated by changing the interatomic distance with the tip of a scanning tunnelling microscope. We quantify this interaction by comparing our measurements to a quantum magnetic model and ab-initio calculations yielding a map of the chiral ground states of pairs of atoms depending on the interatomic separation. The map enables tailoring the chirality of the magnetization in dilute atomic-scale magnets.
000283062 536__ $$0G:(DE-HGF)POF3-142$$a142 - Controlling Spin-Based Phenomena (POF3-142)$$cPOF3-142$$fPOF III$$x0
000283062 588__ $$aDataset connected to CrossRef
000283062 7001_ $$0P:(DE-HGF)0$$aSteinbrecher, M.$$b1
000283062 7001_ $$0P:(DE-HGF)0$$aTernes, M.$$b2
000283062 7001_ $$0P:(DE-Juel1)145203$$aBouhassoune, M.$$b3$$ufzj
000283062 7001_ $$0P:(DE-Juel1)145395$$ados Santos Dias, M.$$b4$$ufzj
000283062 7001_ $$0P:(DE-Juel1)130805$$aLounis, S.$$b5
000283062 7001_ $$0P:(DE-HGF)0$$aWiebe, J.$$b6
000283062 7001_ $$0P:(DE-HGF)0$$aWiesendanger, R.$$b7
000283062 773__ $$0PERI:(DE-600)2553671-0$$a10.1038/ncomms10620$$gVol. 7, p. 10620 -$$p10620$$tNature Communications$$v7$$x2041-1723$$y2016
000283062 8564_ $$uhttps://juser.fz-juelich.de/record/283062/files/ncomms10620.pdf$$yOpenAccess
000283062 8564_ $$uhttps://juser.fz-juelich.de/record/283062/files/ncomms10620.gif?subformat=icon$$xicon$$yOpenAccess
000283062 8564_ $$uhttps://juser.fz-juelich.de/record/283062/files/ncomms10620.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000283062 8564_ $$uhttps://juser.fz-juelich.de/record/283062/files/ncomms10620.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000283062 8564_ $$uhttps://juser.fz-juelich.de/record/283062/files/ncomms10620.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000283062 8564_ $$uhttps://juser.fz-juelich.de/record/283062/files/ncomms10620.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000283062 909CO $$ooai:juser.fz-juelich.de:283062$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000283062 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145203$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000283062 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145395$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000283062 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130805$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000283062 9131_ $$0G:(DE-HGF)POF3-142$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0
000283062 9141_ $$y2016
000283062 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000283062 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000283062 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000283062 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000283062 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT COMMUN : 2014
000283062 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bNAT COMMUN : 2014
000283062 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000283062 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000283062 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000283062 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000283062 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000283062 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aOpenAccess
000283062 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000283062 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000283062 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000283062 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000283062 915__ $$0StatID:(DE-HGF)0560$$2StatID$$aOpenAccess / APC funded
000283062 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000283062 920__ $$lyes
000283062 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
000283062 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
000283062 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000283062 9801_ $$aUNRESTRICTED
000283062 9801_ $$aFullTexts
000283062 980__ $$ajournal
000283062 980__ $$aVDB
000283062 980__ $$aUNRESTRICTED
000283062 980__ $$aI:(DE-Juel1)IAS-1-20090406
000283062 980__ $$aI:(DE-Juel1)PGI-1-20110106
000283062 980__ $$aI:(DE-82)080009_20140620
000283062 981__ $$aI:(DE-Juel1)PGI-1-20110106