001     283062
005     20210129222245.0
024 7 _ |a 10.1038/ncomms10620
|2 doi
024 7 _ |a 2128/10023
|2 Handle
024 7 _ |a WOS:000371020200009
|2 WOS
024 7 _ |a altmetric:5973360
|2 altmetric
024 7 _ |a pmid:26902332
|2 pmid
037 _ _ |a FZJ-2016-01744
082 _ _ |a 500
100 1 _ |a Khajetoorians, A. A.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Tailoring the chiral magnetic interaction between two individual atoms
260 _ _ |a London
|c 2016
|b Nature Publishing Group
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1459232282_26031
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a Chiral magnets are a promising route towards dense magnetic storage technology due to their inherent nano-scale dimensions and energy efficient properties. Engineering chiral magnets requires atomic-level control of the magnetic exchange interactions, including the Dzyaloshinskii–Moriya interaction, which defines a rotational sense for the magnetization of two coupled magnetic moments. Here we show that the indirect conduction electron-mediated Dzyaloshinskii–Moriya interaction between two individual magnetic atoms on a metallic surface can be manipulated by changing the interatomic distance with the tip of a scanning tunnelling microscope. We quantify this interaction by comparing our measurements to a quantum magnetic model and ab-initio calculations yielding a map of the chiral ground states of pairs of atoms depending on the interatomic separation. The map enables tailoring the chirality of the magnetization in dilute atomic-scale magnets.
536 _ _ |a 142 - Controlling Spin-Based Phenomena (POF3-142)
|0 G:(DE-HGF)POF3-142
|c POF3-142
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Steinbrecher, M.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Ternes, M.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Bouhassoune, M.
|0 P:(DE-Juel1)145203
|b 3
|u fzj
700 1 _ |a dos Santos Dias, M.
|0 P:(DE-Juel1)145395
|b 4
|u fzj
700 1 _ |a Lounis, S.
|0 P:(DE-Juel1)130805
|b 5
700 1 _ |a Wiebe, J.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Wiesendanger, R.
|0 P:(DE-HGF)0
|b 7
773 _ _ |a 10.1038/ncomms10620
|g Vol. 7, p. 10620 -
|0 PERI:(DE-600)2553671-0
|p 10620
|t Nature Communications
|v 7
|y 2016
|x 2041-1723
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/283062/files/ncomms10620.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/283062/files/ncomms10620.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/283062/files/ncomms10620.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/283062/files/ncomms10620.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/283062/files/ncomms10620.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/283062/files/ncomms10620.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:283062
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)145203
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)145395
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)130805
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-142
|2 G:(DE-HGF)POF3-100
|v Controlling Spin-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2016
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT COMMUN : 2014
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b NAT COMMUN : 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0500
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a OpenAccess / APC funded
|0 StatID:(DE-HGF)0560
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-1-20090406
|k IAS-1
|l Quanten-Theorie der Materialien
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 1
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 2
980 1 _ |a UNRESTRICTED
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-1-20090406
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a I:(DE-82)080009_20140620
981 _ _ |a I:(DE-Juel1)PGI-1-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21