000283504 001__ 283504
000283504 005__ 20210129222329.0
000283504 0247_ $$2doi$$a10.1021/acs.biochem.5b01028
000283504 0247_ $$2pmid$$apmid:26685112
000283504 0247_ $$2ISSN$$a0006-2960
000283504 0247_ $$2ISSN$$a1520-4995
000283504 0247_ $$2WOS$$aWOS:000369471800005
000283504 037__ $$aFZJ-2016-01837
000283504 041__ $$aeng
000283504 082__ $$a570
000283504 1001_ $$0P:(DE-Juel1)157799$$aPanwalkar, Vineet$$b0$$ufzj
000283504 245__ $$aThe Nedd4-1 WW Domain Recognizes the PY Motif Peptide through Coupled Folding and Binding Equilibria.
000283504 260__ $$aColumbus, Ohio$$bAmerican Chemical Society$$c2016
000283504 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1457439698_1124
000283504 3367_ $$2DataCite$$aOutput Types/Journal article
000283504 3367_ $$00$$2EndNote$$aJournal Article
000283504 3367_ $$2BibTeX$$aARTICLE
000283504 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000283504 3367_ $$2DRIVER$$aarticle
000283504 520__ $$aThe four WW domains of human Nedd4-1 (neuronal precursor cell expressed developmentally downregulated gene 4-1) interact with the PPxY (PY) motifs of the human epithelial Na(+) channel (hENaC) subunits, with the third WW domain (WW3*) showing the highest affinity. We have shown previously that the α-hENaC PY motif binding interface of WW3* undergoes conformational exchange on the millisecond time scale, indicating that conformational sampling plays a role in peptide recognition. To further understand this role, the structure and dynamics of hNedd4-1 WW3* were investigated. The nuclear Overhauser effect-derived structure of apo-WW3* resembles the domain in complex with the α-hENaC peptide, although particular side chain conformations change upon peptide binding, which was further investigated by molecular dynamics simulations. Model-free analysis of the (15)N nuclear magnetic resonance spin relaxation data showed that the apo and peptide-bound states of WW3* have similar backbone picosecond to nanosecond time scale dynamics. However, apo-WW3* exhibits pronounced chemical exchange on the millisecond time scale that is quenched upon peptide binding. (1)HN and (15)N Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion experiments at various temperatures revealed that apo-WW3* exists in an equilibrium between the natively folded peptide binding-competent state and a random coil-like denatured state. The thermodynamics of the folding equilibrium was determined by fitting a thermal denaturation profile monitored by circular dichroism spectroscopy in combination with the CPMG data, leading to the conclusion that the unfolded state is populated to ∼20% at 37 °C. These results show that the binding of the hNedd4-1 WW3* domain to α-hENaC is coupled to the folding equilibrium.
000283504 536__ $$0G:(DE-HGF)POF3-553$$a553 - Physical Basis of Diseases (POF3-553)$$cPOF3-553$$fPOF III$$x0
000283504 588__ $$aDataset connected to CrossRef, PubMed,
000283504 7001_ $$0P:(DE-Juel1)144510$$aNeudecker, Philipp$$b1$$ufzj
000283504 7001_ $$0P:(DE-HGF)0$$aSchmitz, Michael$$b2
000283504 7001_ $$0P:(DE-Juel1)132010$$aLecher, Justin$$b3$$ufzj
000283504 7001_ $$0P:(DE-Juel1)159365$$aSchulte, Marianne$$b4$$ufzj
000283504 7001_ $$0P:(DE-HGF)0$$aMedini, Karima$$b5
000283504 7001_ $$0P:(DE-Juel1)132023$$aStoldt, Matthias$$b6$$ufzj
000283504 7001_ $$0P:(DE-HGF)0$$aBrimble, Margaret A$$b7
000283504 7001_ $$0P:(DE-Juel1)132029$$aWillbold, Dieter$$b8$$ufzj
000283504 7001_ $$0P:(DE-HGF)0$$aDingley, Andrew J$$b9$$eCorresponding author
000283504 773__ $$0PERI:(DE-600)1472258-6$$a10.1021/acs.biochem.5b01028$$gVol. 55, no. 4, p. 659 - 674$$n4$$p659 - 674$$tBiochemistry$$v55$$x1520-4995$$y2016
000283504 8564_ $$uhttps://juser.fz-juelich.de/record/283504/files/Panwalkar%20et%20al_2016.pdf$$yRestricted
000283504 8564_ $$uhttps://juser.fz-juelich.de/record/283504/files/Panwalkar%20et%20al_2016.gif?subformat=icon$$xicon$$yRestricted
000283504 8564_ $$uhttps://juser.fz-juelich.de/record/283504/files/Panwalkar%20et%20al_2016.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000283504 8564_ $$uhttps://juser.fz-juelich.de/record/283504/files/Panwalkar%20et%20al_2016.jpg?subformat=icon-180$$xicon-180$$yRestricted
000283504 8564_ $$uhttps://juser.fz-juelich.de/record/283504/files/Panwalkar%20et%20al_2016.jpg?subformat=icon-640$$xicon-640$$yRestricted
000283504 8564_ $$uhttps://juser.fz-juelich.de/record/283504/files/Panwalkar%20et%20al_2016.pdf?subformat=pdfa$$xpdfa$$yRestricted
000283504 909CO $$ooai:juser.fz-juelich.de:283504$$pVDB
000283504 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157799$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000283504 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144510$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000283504 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132010$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000283504 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159365$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000283504 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132023$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000283504 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132029$$aForschungszentrum Jülich GmbH$$b8$$kFZJ
000283504 9131_ $$0G:(DE-HGF)POF3-553$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vPhysical Basis of Diseases$$x0
000283504 9141_ $$y2016
000283504 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000283504 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000283504 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBIOCHEMISTRY-US : 2014
000283504 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000283504 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000283504 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000283504 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000283504 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000283504 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000283504 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000283504 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000283504 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000283504 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000283504 920__ $$lyes
000283504 9201_ $$0I:(DE-Juel1)ICS-6-20110106$$kICS-6$$lStrukturbiochemie $$x0
000283504 980__ $$ajournal
000283504 980__ $$aVDB
000283504 980__ $$aUNRESTRICTED
000283504 980__ $$aI:(DE-Juel1)ICS-6-20110106
000283504 981__ $$aI:(DE-Juel1)IBI-7-20200312