Hauptseite > Publikationsdatenbank > The Nedd4-1 WW Domain Recognizes the PY Motif Peptide through Coupled Folding and Binding Equilibria. > print |
001 | 283504 | ||
005 | 20210129222329.0 | ||
024 | 7 | _ | |a 10.1021/acs.biochem.5b01028 |2 doi |
024 | 7 | _ | |a pmid:26685112 |2 pmid |
024 | 7 | _ | |a 0006-2960 |2 ISSN |
024 | 7 | _ | |a 1520-4995 |2 ISSN |
024 | 7 | _ | |a WOS:000369471800005 |2 WOS |
037 | _ | _ | |a FZJ-2016-01837 |
041 | _ | _ | |a eng |
082 | _ | _ | |a 570 |
100 | 1 | _ | |a Panwalkar, Vineet |0 P:(DE-Juel1)157799 |b 0 |u fzj |
245 | _ | _ | |a The Nedd4-1 WW Domain Recognizes the PY Motif Peptide through Coupled Folding and Binding Equilibria. |
260 | _ | _ | |a Columbus, Ohio |c 2016 |b American Chemical Society |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1457439698_1124 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a article |2 DRIVER |
520 | _ | _ | |a The four WW domains of human Nedd4-1 (neuronal precursor cell expressed developmentally downregulated gene 4-1) interact with the PPxY (PY) motifs of the human epithelial Na(+) channel (hENaC) subunits, with the third WW domain (WW3*) showing the highest affinity. We have shown previously that the α-hENaC PY motif binding interface of WW3* undergoes conformational exchange on the millisecond time scale, indicating that conformational sampling plays a role in peptide recognition. To further understand this role, the structure and dynamics of hNedd4-1 WW3* were investigated. The nuclear Overhauser effect-derived structure of apo-WW3* resembles the domain in complex with the α-hENaC peptide, although particular side chain conformations change upon peptide binding, which was further investigated by molecular dynamics simulations. Model-free analysis of the (15)N nuclear magnetic resonance spin relaxation data showed that the apo and peptide-bound states of WW3* have similar backbone picosecond to nanosecond time scale dynamics. However, apo-WW3* exhibits pronounced chemical exchange on the millisecond time scale that is quenched upon peptide binding. (1)HN and (15)N Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion experiments at various temperatures revealed that apo-WW3* exists in an equilibrium between the natively folded peptide binding-competent state and a random coil-like denatured state. The thermodynamics of the folding equilibrium was determined by fitting a thermal denaturation profile monitored by circular dichroism spectroscopy in combination with the CPMG data, leading to the conclusion that the unfolded state is populated to ∼20% at 37 °C. These results show that the binding of the hNedd4-1 WW3* domain to α-hENaC is coupled to the folding equilibrium. |
536 | _ | _ | |a 553 - Physical Basis of Diseases (POF3-553) |0 G:(DE-HGF)POF3-553 |c POF3-553 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, PubMed, |
700 | 1 | _ | |a Neudecker, Philipp |0 P:(DE-Juel1)144510 |b 1 |u fzj |
700 | 1 | _ | |a Schmitz, Michael |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Lecher, Justin |0 P:(DE-Juel1)132010 |b 3 |u fzj |
700 | 1 | _ | |a Schulte, Marianne |0 P:(DE-Juel1)159365 |b 4 |u fzj |
700 | 1 | _ | |a Medini, Karima |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Stoldt, Matthias |0 P:(DE-Juel1)132023 |b 6 |u fzj |
700 | 1 | _ | |a Brimble, Margaret A |0 P:(DE-HGF)0 |b 7 |
700 | 1 | _ | |a Willbold, Dieter |0 P:(DE-Juel1)132029 |b 8 |u fzj |
700 | 1 | _ | |a Dingley, Andrew J |0 P:(DE-HGF)0 |b 9 |e Corresponding author |
773 | _ | _ | |a 10.1021/acs.biochem.5b01028 |g Vol. 55, no. 4, p. 659 - 674 |0 PERI:(DE-600)1472258-6 |n 4 |p 659 - 674 |t Biochemistry |v 55 |y 2016 |x 1520-4995 |
856 | 4 | _ | |y Restricted |u https://juser.fz-juelich.de/record/283504/files/Panwalkar%20et%20al_2016.pdf |
856 | 4 | _ | |y Restricted |x icon |u https://juser.fz-juelich.de/record/283504/files/Panwalkar%20et%20al_2016.gif?subformat=icon |
856 | 4 | _ | |y Restricted |x icon-1440 |u https://juser.fz-juelich.de/record/283504/files/Panwalkar%20et%20al_2016.jpg?subformat=icon-1440 |
856 | 4 | _ | |y Restricted |x icon-180 |u https://juser.fz-juelich.de/record/283504/files/Panwalkar%20et%20al_2016.jpg?subformat=icon-180 |
856 | 4 | _ | |y Restricted |x icon-640 |u https://juser.fz-juelich.de/record/283504/files/Panwalkar%20et%20al_2016.jpg?subformat=icon-640 |
856 | 4 | _ | |y Restricted |x pdfa |u https://juser.fz-juelich.de/record/283504/files/Panwalkar%20et%20al_2016.pdf?subformat=pdfa |
909 | C | O | |o oai:juser.fz-juelich.de:283504 |p VDB |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)157799 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)144510 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)132010 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)159365 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)132023 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)132029 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences |1 G:(DE-HGF)POF3-550 |0 G:(DE-HGF)POF3-553 |2 G:(DE-HGF)POF3-500 |v Physical Basis of Diseases |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
914 | 1 | _ | |y 2016 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b BIOCHEMISTRY-US : 2014 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
915 | _ | _ | |a No Authors Fulltext |0 StatID:(DE-HGF)0550 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)ICS-6-20110106 |k ICS-6 |l Strukturbiochemie |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)ICS-6-20110106 |
981 | _ | _ | |a I:(DE-Juel1)IBI-7-20200312 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|