001     283530
005     20240712084512.0
024 7 _ |a 10.1002/pssa.201533025
|2 doi
024 7 _ |a 0031-8965
|2 ISSN
024 7 _ |a 1521-396X
|2 ISSN
024 7 _ |a 1862-6300
|2 ISSN
024 7 _ |a 1862-6319
|2 ISSN
024 7 _ |a WOS:000385222900013
|2 WOS
037 _ _ |a FZJ-2016-01849
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Becker, Jan Philipp
|0 P:(DE-Juel1)142337
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Modeling and practical realization of thin film silicon-based integrated solar water splitting devices
260 _ _ |a Weinheim
|c 2016
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1469435614_12103
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a An integrated solar water splitting device based on thin film silicon multijunction photocathodes is presented. A graphical representation of the photovoltaic current–voltage data is introduced which allows for an estimation of the maximum achievable solar-to-hydrogen efficiency of the integrated device. Furthermore, a simple yet very useful series circuit model is used to predict the photoelectrochemical performance of the integrated device in a more elaborate way when the j–V characteristics of the individual components are known. Within the model, the j–V characteristics of each component can be either modeled with parameters from the literature or measured. The photocathode, the electrolyte concentration, and the hydrogen and oxygen evolving catalysts were varied exemplarily and the impact of each component on the integrated device performance was evaluated. A maximum solar-to-hydrogen efficiency of 9.5% was found using a triple junction solar cell functionalized with a Pt catalyst for the hydrogen evolution and a RuO2 catalyst for the oxygen evolution reaction in a 1 M KOH electrolyte. This result was confirmed experimentally and is compared to efficiencies reported in the literature.
536 _ _ |a 126 - Solar Fuels (POF3-126)
|0 G:(DE-HGF)POF3-126
|c POF3-126
|f POF III
|x 0
536 _ _ |a 121 - Solar cells of the next generation (POF3-121)
|0 G:(DE-HGF)POF3-121
|c POF3-121
|f POF III
|x 1
536 _ _ |0 G:(DE-Juel1)HITEC-20170406
|x 2
|c HITEC-20170406
|a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Urbain, Félix
|0 P:(DE-Juel1)156469
|b 1
|u fzj
700 1 _ |a Smirnov, Vladimir
|0 P:(DE-Juel1)130297
|b 2
|u fzj
700 1 _ |a Rau, Uwe
|0 P:(DE-Juel1)143905
|b 3
|u fzj
700 1 _ |a Ziegler, Jürgen
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Kaiser, Bernhard
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Jaegermann, Wolfram
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Finger, Friedhelm
|0 P:(DE-Juel1)130238
|b 7
|u fzj
773 _ _ |a 10.1002/pssa.201533025
|g p. n/a - n/a
|0 PERI:(DE-600)1481091-8
|n 7
|p 1738 - 1746
|t Physica status solidi / A
|v 213
|y 2016
|x 0031-8965
856 4 _ |u https://juser.fz-juelich.de/record/283530/files/Becker_et_al-2016-physica_status_solidi_%28a%29.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/283530/files/Becker_et_al-2016-physica_status_solidi_%28a%29.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/283530/files/Becker_et_al-2016-physica_status_solidi_%28a%29.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/283530/files/Becker_et_al-2016-physica_status_solidi_%28a%29.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/283530/files/Becker_et_al-2016-physica_status_solidi_%28a%29.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/283530/files/Becker_et_al-2016-physica_status_solidi_%28a%29.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:283530
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)142337
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)156469
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)130297
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)143905
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)130238
913 1 _ |a DE-HGF
|l Erneuerbare Energien
|1 G:(DE-HGF)POF3-120
|0 G:(DE-HGF)POF3-126
|2 G:(DE-HGF)POF3-100
|v Solar Fuels
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
913 1 _ |a DE-HGF
|l Erneuerbare Energien
|1 G:(DE-HGF)POF3-120
|0 G:(DE-HGF)POF3-121
|2 G:(DE-HGF)POF3-100
|v Solar cells of the next generation
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2016
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS STATUS SOLIDI A : 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a No Authors Fulltext
|0 StatID:(DE-HGF)0550
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-5-20101013
|k IEK-5
|l Photovoltaik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-5-20101013
981 _ _ |a I:(DE-Juel1)IMD-3-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21