000283554 001__ 283554
000283554 005__ 20240712101014.0
000283554 0247_ $$2doi$$a10.5194/acp-16-1105-2016
000283554 0247_ $$2ISSN$$a1680-7316
000283554 0247_ $$2ISSN$$a1680-7324
000283554 0247_ $$2Handle$$a2128/9918
000283554 0247_ $$2WOS$$aWOS:000371284000038
000283554 0247_ $$2altmetric$$aaltmetric:5070804
000283554 037__ $$aFZJ-2016-01870
000283554 082__ $$a550
000283554 1001_ $$0P:(DE-Juel1)136801$$aZhao, Defeng$$b0
000283554 245__ $$aCloud condensation nuclei activity, droplet growth kinetics, and hygroscopicity of biogenic and anthropogenic secondary organic aerosol (SOA)
000283554 260__ $$aKatlenburg-Lindau$$bEGU$$c2016
000283554 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1457605561_9286
000283554 3367_ $$2DataCite$$aOutput Types/Journal article
000283554 3367_ $$00$$2EndNote$$aJournal Article
000283554 3367_ $$2BibTeX$$aARTICLE
000283554 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000283554 3367_ $$2DRIVER$$aarticle
000283554 520__ $$aInteraction of biogenic volatile organic compounds (VOCs) with Anthropogenic VOC (AVOC) affects the physicochemical properties of secondary organic aerosol (SOA). We investigated cloud droplet activation (CCN activity), droplet growth kinetics, and hygroscopicity of mixed anthropogenic and biogenic SOA (ABSOA) compared to pure biogenic SOA (BSOA) and pure anthropogenic SOA (ASOA). Selected monoterpenes and aromatics were used as representative precursors of BSOA and ASOA, respectively.We found that BSOA, ASOA, and ABSOA had similar CCN activity despite the higher oxygen to carbon ratio (O/C) of ASOA compared to BSOA and ABSOA. For individual reaction systems, CCN activity increased with the degree of oxidation. Yet, when considering all different types of SOA together, the hygroscopicity parameter, κCCN, did not correlate with O/C. Droplet growth kinetics of BSOA, ASOA, and ABSOA were comparable to that of (NH4)2SO4, which indicates that there was no delay in the water uptake for these SOA in supersaturated conditions.In contrast to CCN activity, the hygroscopicity parameter from a hygroscopic tandem differential mobility analyzer (HTDMA) measurement, κHTDMA, of ASOA was distinctively higher (0.09–0.10) than that of BSOA (0.03–0.06), which was attributed to the higher degree of oxidation of ASOA. The ASOA components in mixed ABSOA enhanced aerosol hygroscopicity. Changing the ASOA fraction by adding biogenic VOC (BVOC) to ASOA or vice versa (AVOC to BSOA) changed the hygroscopicity of aerosol, in line with the change in the degree of oxidation of aerosol. However, the hygroscopicity of ABSOA cannot be described by a simple linear combination of pure BSOA and ASOA systems. This indicates that additional processes, possibly oligomerization, affected the hygroscopicity.Closure analysis of CCN and HTDMA data showed κHTDMA was lower than κCCN by 30–70 %. Better closure was achieved for ASOA compared to BSOA. This discrepancy can be attributed to several reasons. ASOA seemed to have higher solubility in subsaturated conditions and/or higher surface tension at the activation point than that of BSOA.
000283554 536__ $$0G:(DE-HGF)POF3-243$$a243 - Tropospheric trace substances and their transformation processes (POF3-243)$$cPOF3-243$$fPOF III$$x0
000283554 588__ $$aDataset connected to CrossRef
000283554 7001_ $$0P:(DE-Juel1)7151$$aBuchholz, A.$$b1
000283554 7001_ $$0P:(DE-HGF)0$$aKortner, B.$$b2
000283554 7001_ $$0P:(DE-Juel1)4548$$aSchlag, Patrick$$b3
000283554 7001_ $$0P:(DE-Juel1)8554$$aRubach, Florian$$b4
000283554 7001_ $$0P:(DE-Juel1)7363$$aFuchs, Hendrik$$b5
000283554 7001_ $$0P:(DE-Juel1)4528$$aKiendler-Scharr, A.$$b6
000283554 7001_ $$0P:(DE-Juel1)5344$$aTillmann, R.$$b7
000283554 7001_ $$0P:(DE-Juel1)16324$$aWahner, A.$$b8
000283554 7001_ $$0P:(DE-HGF)0$$aWatne, Å. K.$$b9
000283554 7001_ $$0P:(DE-HGF)0$$aHallquist, M.$$b10
000283554 7001_ $$0P:(DE-HGF)0$$aFlores, J. M.$$b11
000283554 7001_ $$0P:(DE-HGF)0$$aRudich, Y.$$b12
000283554 7001_ $$0P:(DE-HGF)0$$aKristensen, K.$$b13
000283554 7001_ $$0P:(DE-HGF)0$$aHansen, A. M. K.$$b14
000283554 7001_ $$0P:(DE-HGF)0$$aGlasius, M.$$b15
000283554 7001_ $$0P:(DE-HGF)0$$aKourtchev, I.$$b16
000283554 7001_ $$0P:(DE-HGF)0$$aKalberer, M.$$b17
000283554 7001_ $$0P:(DE-Juel1)16346$$aMentel, Thomas F.$$b18$$eCorresponding author
000283554 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-16-1105-2016$$gVol. 16, no. 2, p. 1105 - 1121$$n2$$p1105 - 1121$$tAtmospheric chemistry and physics$$v16$$x1680-7324$$y2016
000283554 8564_ $$uhttps://juser.fz-juelich.de/record/283554/files/acp-16-1105-2016.pdf$$yOpenAccess
000283554 8564_ $$uhttps://juser.fz-juelich.de/record/283554/files/acp-16-1105-2016.gif?subformat=icon$$xicon$$yOpenAccess
000283554 8564_ $$uhttps://juser.fz-juelich.de/record/283554/files/acp-16-1105-2016.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000283554 8564_ $$uhttps://juser.fz-juelich.de/record/283554/files/acp-16-1105-2016.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000283554 8564_ $$uhttps://juser.fz-juelich.de/record/283554/files/acp-16-1105-2016.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000283554 8564_ $$uhttps://juser.fz-juelich.de/record/283554/files/acp-16-1105-2016.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000283554 909CO $$ooai:juser.fz-juelich.de:283554$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000283554 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)136801$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000283554 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)7151$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000283554 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000283554 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)4548$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000283554 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)7363$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000283554 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)4528$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000283554 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)5344$$aForschungszentrum Jülich GmbH$$b7$$kFZJ
000283554 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)16324$$aForschungszentrum Jülich GmbH$$b8$$kFZJ
000283554 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)16346$$aForschungszentrum Jülich GmbH$$b18$$kFZJ
000283554 9131_ $$0G:(DE-HGF)POF3-243$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vTropospheric trace substances and their transformation processes$$x0
000283554 9141_ $$y2016
000283554 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000283554 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000283554 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000283554 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000283554 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000283554 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000283554 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000283554 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000283554 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bATMOS CHEM PHYS : 2014
000283554 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000283554 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bATMOS CHEM PHYS : 2014
000283554 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000283554 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000283554 920__ $$lyes
000283554 9201_ $$0I:(DE-Juel1)IEK-8-20101013$$kIEK-8$$lTroposphäre$$x0
000283554 9801_ $$aUNRESTRICTED
000283554 9801_ $$aFullTexts
000283554 980__ $$ajournal
000283554 980__ $$aVDB
000283554 980__ $$aUNRESTRICTED
000283554 980__ $$aI:(DE-Juel1)IEK-8-20101013
000283554 981__ $$aI:(DE-Juel1)ICE-3-20101013