000283561 001__ 283561 000283561 005__ 20210129222350.0 000283561 0247_ $$2doi$$a10.1016/j.expneurol.2016.02.018 000283561 0247_ $$2ISSN$$a0014-4886 000283561 0247_ $$2ISSN$$a1090-2430 000283561 0247_ $$2WOS$$aWOS:000374612900011 000283561 0247_ $$2altmetric$$aaltmetric:6029347 000283561 0247_ $$2pmid$$apmid:26923911 000283561 037__ $$aFZJ-2016-01876 000283561 041__ $$aEnglish 000283561 082__ $$a610 000283561 1001_ $$0P:(DE-HGF)0$$aBraun, Ramona$$b0 000283561 245__ $$aTranscranial direct current stimulation accelerates recovery of function, induces neurogenesis and recruits oligodendrocyte precursors in a rat model of stroke 000283561 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2016 000283561 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1457606203_9291 000283561 3367_ $$2DataCite$$aOutput Types/Journal article 000283561 3367_ $$00$$2EndNote$$aJournal Article 000283561 3367_ $$2BibTeX$$aARTICLE 000283561 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000283561 3367_ $$2DRIVER$$aarticle 000283561 520__ $$aBackgroundClinical data suggest that transcranial direct current stimulation (tDCS) may be used to facilitate rehabilitation after stroke. However, data are inconsistent and the neurobiological mechanisms underlying tDCS remain poorly explored, impeding its implementation into clinical routine. In the healthy rat brain, tDCS affects neural stem cells (NSC) and microglia. We here investigated whether tDCS applied after stroke also beneficially affects these cells, which are known to be involved in regeneration and repair.MethodsFocal cerebral ischemia was induced in rats by transient occlusion of the middle cerebral artery. Twenty-eight animals with comparable infarcts, as judged by magnetic resonance imaging, were randomized to receive a multi-session paradigm of either cathodal, anodal, or sham tDCS. Behaviorally, recovery of motor function was assessed by Catwalk. Proliferation in the NSC niches was monitored by Positron-Emission-Tomography (PET) employing the radiotracer 3′-deoxy-3′-[18F]fluoro-l-thymidine ([18F]FLT). Microglia activation was depicted with [11C]PK11195-PET. In addition, immunohistochemical analyses were used to quantify neuroblasts, oligodendrocyte precursors, and activation and polarization of microglia.ResultsAnodal and cathodal tDCS both accelerated functional recovery, though affecting different aspects of motor function. Likewise, tDCS induced neurogenesis independently of polarity, while only cathodal tDCS recruited oligodendrocyte precursors towards the lesion. Moreover, cathodal stimulation preferably supported M1-polarization of microglia.ConclusionsTDCS acts through multifaceted mechanisms that far exceed its primary neurophysiological effects, encompassing proliferation and migration of stem cells, their neuronal differentiation, and modulation of microglia responses. 000283561 536__ $$0G:(DE-HGF)POF3-572$$a572 - (Dys-)function and Plasticity (POF3-572)$$cPOF3-572$$fPOF III$$x0 000283561 588__ $$aDataset connected to CrossRef 000283561 7001_ $$0P:(DE-HGF)0$$aKlein, Rebecca$$b1 000283561 7001_ $$0P:(DE-HGF)0$$aWalter, Helene Luise$$b2 000283561 7001_ $$0P:(DE-HGF)0$$aOhren, Maurice$$b3 000283561 7001_ $$0P:(DE-HGF)0$$aFreudenmacher, Lars$$b4 000283561 7001_ $$0P:(DE-HGF)0$$aGetachew, Kaleab$$b5 000283561 7001_ $$0P:(DE-HGF)0$$aLadwig, Anne$$b6 000283561 7001_ $$0P:(DE-HGF)0$$aLuelling, Joachim$$b7 000283561 7001_ $$0P:(DE-Juel1)166419$$aNeumaier, Bernd$$b8 000283561 7001_ $$0P:(DE-HGF)0$$aEndepols, Heike$$b9 000283561 7001_ $$0P:(DE-HGF)0$$aGraf, Rudolf$$b10 000283561 7001_ $$0P:(DE-HGF)0$$aHoehn, Mathias$$b11 000283561 7001_ $$0P:(DE-Juel1)131720$$aFink, Gereon Rudolf$$b12 000283561 7001_ $$0P:(DE-HGF)0$$aSchroeter, Michael$$b13 000283561 7001_ $$0P:(DE-HGF)0$$aRueger, Maria Adele$$b14$$eCorresponding author 000283561 773__ $$0PERI:(DE-600)1466932-8$$a10.1016/j.expneurol.2016.02.018$$gVol. 279, p. 127 - 136$$p127 - 136$$tExperimental neurology$$v279$$x0014-4886$$y2016 000283561 8564_ $$uhttps://juser.fz-juelich.de/record/283561/files/1-s2.0-S0014488616300401-main.pdf$$yRestricted 000283561 8564_ $$uhttps://juser.fz-juelich.de/record/283561/files/1-s2.0-S0014488616300401-main.gif?subformat=icon$$xicon$$yRestricted 000283561 8564_ $$uhttps://juser.fz-juelich.de/record/283561/files/1-s2.0-S0014488616300401-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted 000283561 8564_ $$uhttps://juser.fz-juelich.de/record/283561/files/1-s2.0-S0014488616300401-main.jpg?subformat=icon-180$$xicon-180$$yRestricted 000283561 8564_ $$uhttps://juser.fz-juelich.de/record/283561/files/1-s2.0-S0014488616300401-main.jpg?subformat=icon-640$$xicon-640$$yRestricted 000283561 8564_ $$uhttps://juser.fz-juelich.de/record/283561/files/1-s2.0-S0014488616300401-main.pdf?subformat=pdfa$$xpdfa$$yRestricted 000283561 909CO $$ooai:juser.fz-juelich.de:283561$$pVDB 000283561 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166419$$aForschungszentrum Jülich GmbH$$b8$$kFZJ 000283561 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131720$$aForschungszentrum Jülich GmbH$$b12$$kFZJ 000283561 9131_ $$0G:(DE-HGF)POF3-572$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$v(Dys-)function and Plasticity$$x0 000283561 9141_ $$y2016 000283561 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000283561 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences 000283561 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bEXP NEUROL : 2014 000283561 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000283561 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000283561 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000283561 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000283561 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext 000283561 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database 000283561 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews 000283561 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000283561 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz 000283561 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000283561 920__ $$lyes 000283561 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x0 000283561 9201_ $$0I:(DE-Juel1)INM-5-20090406$$kINM-5$$lNuklearchemie$$x1 000283561 980__ $$ajournal 000283561 980__ $$aVDB 000283561 980__ $$aUNRESTRICTED 000283561 980__ $$aI:(DE-Juel1)INM-3-20090406 000283561 980__ $$aI:(DE-Juel1)INM-5-20090406 000283561 981__ $$aI:(DE-Juel1)INM-5-20090406