000283566 001__ 283566
000283566 005__ 20210129222352.0
000283566 0247_ $$2Handle$$a2128/9996
000283566 0247_ $$2ISSN$$a1866-1777
000283566 020__ $$a978-3-95806-111-8
000283566 037__ $$aFZJ-2016-01880
000283566 041__ $$aEnglish
000283566 1001_ $$0P:(DE-HGF)0$$aSchäfer, Anna$$b0$$eCorresponding author$$gfemale$$ufzj
000283566 245__ $$aGrowth and characterization of crystalline rare-earth based thin oxide films for the application as gate dielectric in nanotechnology$$f- 2015-08-18
000283566 260__ $$aJülich$$bForschungszentrum Jülich GmbH Zentralbibliothek, Verlag$$c2015
000283566 300__ $$axiii, 157 S.
000283566 3367_ $$0PUB:(DE-HGF)11$$2PUB:(DE-HGF)$$aDissertation / PhD Thesis$$bphd$$mphd$$s1458217185_9244
000283566 3367_ $$0PUB:(DE-HGF)3$$2PUB:(DE-HGF)$$aBook$$mbook
000283566 3367_ $$02$$2EndNote$$aThesis
000283566 3367_ $$2DRIVER$$adoctoralThesis
000283566 3367_ $$2BibTeX$$aPHDTHESIS
000283566 3367_ $$2DataCite$$aOutput Types/Dissertation
000283566 3367_ $$2ORCID$$aDISSERTATION
000283566 4900_ $$aSchriften des Forschungszentrums Jülich. Reihe Information / Information$$v46
000283566 502__ $$aRWTH Aachen, Diss., 2015$$bDr.$$cRWTH Aachen$$d2015
000283566 520__ $$aFor standard metal oxides semiconductor (MOS) field effect transistors (FETs), but also for any other MOS based device appropriate gate dielectrics are needed. Such dielectrics, usually oxides, need to exhibit good layer quality and stability, good insulating properties and typically high permittivities. The aim of this work is to develop new oxides for the use in standard Si transistors on the one hand and for GaN based devices such as high electron mobility transistors on the other hand. For Si MOSFETs a standard atomic layer deposition (ALD) HfO$_{2}$ process is extended to dope HfO$_{2}$ with Al and Lu. After process optimization Hf$_{0.89}$Al$_{0.11}$O$_{2-\Delta}$ and Hf$_{0.8}$Lu$_{0.2}$O$_{2-\Delta}$ transform into a polycrystalline layer with large fractions of a high $\ kappa$ phase of HfO$_{2}$, most probably the cubic one, and exhibit permittivities of 30 and 33, respectively. All layers are smooth, the density of interface traps hardly changes due to doping and leakage current densities for Hf$_{0.8}$Lu$_{0.2}$O$_{2-\Delta}$ are as low as 10$^{0}8$A/cm$^{2}$ for an equivalent oxide thickness of 1.5 nm. For the application on GaN, crystalline GdScO$_{3}$ and LaLuO$_{3}$ are investigated. Calculations on GdScO$_{3}$ reveal that the orthorhombic and cubic form of GdScO$_{3}$ have almost equal energies of formation while a hexagonal crystal has a 500 eV per formula unit enhanced energy. Even though the energy of formation is fairly high, the novel hexagonal forms of GdScO$_{3}$ and LaLuO$_{3}$ could be stabilized by pulsed laser deposition on GaN and on Y$_{2}$O$_{3}$ on Si(111) which is used as alternative growth template with hexagonal geometry. Thus the nature of the substrate (polar/ non-polar) apparently determines the structure of the oxide formed. Further analysis shows that the two growth templates can promote the hexagonal or the cubic forms of GdScO$_{3}$ and LaLuO$_{3}$ depending on growth temperature and Y$_{2}$O$_{3}$ layer thickness. Relative permittivities of approximately 26 are extracted for both hexagonal GdScO$_{3}$ and hexagonal LaLuO$_{3}$. All known phases of the two oxides have band gaps above 5 eV which is important for the use as gate dielectric, e.g. to minimize tunneling currents. Current voltage measurements reveal leakage current densities of 1.2 X 10$^{-8}$ Acm$^{-2}$ at 1V for $\textit{EOT}$ = 3nm and a dielectric breakdown above 2MVcm$^{-1}$ for hexagonal GdScO$_{3}$ on GaN.
000283566 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000283566 650_7 $$xDiss.
000283566 8564_ $$uhttps://juser.fz-juelich.de/record/283566/files/Information_46.pdf$$yOpenAccess
000283566 8564_ $$uhttps://juser.fz-juelich.de/record/283566/files/Information_46.gif?subformat=icon$$xicon$$yOpenAccess
000283566 8564_ $$uhttps://juser.fz-juelich.de/record/283566/files/Information_46.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000283566 8564_ $$uhttps://juser.fz-juelich.de/record/283566/files/Information_46.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000283566 8564_ $$uhttps://juser.fz-juelich.de/record/283566/files/Information_46.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000283566 8564_ $$uhttps://juser.fz-juelich.de/record/283566/files/Information_46.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000283566 909CO $$ooai:juser.fz-juelich.de:283566$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000283566 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000283566 9141_ $$y2016
000283566 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144017$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000283566 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000283566 920__ $$lyes
000283566 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000283566 980__ $$aphd
000283566 980__ $$aVDB
000283566 980__ $$aUNRESTRICTED
000283566 980__ $$abook
000283566 980__ $$aI:(DE-Juel1)PGI-9-20110106
000283566 9801_ $$aUNRESTRICTED
000283566 9801_ $$aFullTexts