000283572 001__ 283572
000283572 005__ 20240625085706.0
000283572 0247_ $$2Handle$$a2128/10013
000283572 0247_ $$2ISSN$$a1866-1807
000283572 020__ $$a978-3-95806-091-3
000283572 037__ $$aFZJ-2016-01886
000283572 041__ $$aEnglish
000283572 1001_ $$0P:(DE-Juel1)131022$$aWaser, Rainer$$b0$$eEditor$$gmale$$ufzj
000283572 1112_ $$a47th IFF Spring School$$cJülich$$d2016-02-22 - 2016-03-04$$wGermany
000283572 245__ $$aMemristive Phenomena –From Fundamental Physics to Neuromorphic Computing
000283572 260__ $$aJülich$$bForschungszentrum Jülich GmbH Zentralbibliothek, Verlag$$c2016
000283572 300__ $$agetr. Zählung
000283572 3367_ $$0PUB:(DE-HGF)26$$2PUB:(DE-HGF)$$aProceedings$$mproc
000283572 3367_ $$0PUB:(DE-HGF)3$$2PUB:(DE-HGF)$$aBook$$bbook$$mbook$$s1458291437_9162
000283572 3367_ $$2DRIVER$$abook
000283572 3367_ $$01$$2EndNote$$aBook
000283572 3367_ $$2DataCite$$aOutput Types/Book
000283572 3367_ $$2ORCID$$aBOOK
000283572 3367_ $$2BibTeX$$aBOOK
000283572 4900_ $$aSchriften des Forschungszentrums Jülich. Reihe Schlüsseltechnologien / Key Technologies$$v113
000283572 520__ $$aMemristive phenomena combine the functionalities of electronic resistance and data memory in solid-state elements, which are able to change their resistance as a result of an electrical stimulation in a non-volatile fashion. In nanoelectronics, this functionality can be used for information storage and unconventional logic, as well as neuromorphic computing concepts that are aimed at mimicking the operation of the human brain. A multitude of fascinating memristive phenomena has emerged over the past two decades. These phenomena typically occur in oxides and higher chalcogenides and are one of the hottest topics in current solid-state research, comprising unusual phase transitions, spintronic and multiferroic tunneling effects, as well as nanoscale redox processes by local ion motion. They involve electron correlation, quantum point contact effects and exotic conformation changes at the atomic level. The Spring School provides a comprehensive introduction to and an overview of current research topics covering the physics of memristive phenomena, with an emphasis on an understanding of the underlying basic principles. The inspiration to organize this school arose from our Cooperative Research Center $\textbf{Resistively Switching Chalcogenides for Future Electronics (SFB 917)}$ which has been funded by the Deutsche Forschungsgemeinschaft since July 2011. The overarching aim of the SFB 917 is to advance the microscopic understanding of memristive phenomena utilizing changes in the atomic configuration, in particular in the phase and the valence of oxides and higher chalcogenides. To explore the full potential and pave the way for an ultimately energy-efficient electronics technology it is mandatory to realise ultrahigh scalability, fast switching kinetics and long retention times. The promise to realise fast, nonvolatile devices which may enable novel, brain-like functionalities by neuromorphic computing, defines the technological potential of the SFB. The school comprises approximately 50 hours of lectures, including discussions, as well as the opportunity to visit the participating Institutes in Forschungszentrum Jülich. All lectures will be given in English. Registered participants will receive a book of lecture notes that contains all of the material presented during the school. The lectures are grouped together in five sections, which are outlined below. [...]
000283572 536__ $$0G:(DE-HGF)POF3-899$$a899 - ohne Topic (POF3-899)$$cPOF3-899$$fPOF III$$x0
000283572 7001_ $$0P:(DE-HGF)0$$aWuttig, Matthias$$b1$$eEditor$$gmale
000283572 8564_ $$uhttps://juser.fz-juelich.de/record/283572/files/Schluesseltech_113.pdf$$yOpenAccess
000283572 8564_ $$uhttps://juser.fz-juelich.de/record/283572/files/Schluesseltech_113.gif?subformat=icon$$xicon$$yOpenAccess
000283572 8564_ $$uhttps://juser.fz-juelich.de/record/283572/files/Schluesseltech_113.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000283572 8564_ $$uhttps://juser.fz-juelich.de/record/283572/files/Schluesseltech_113.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000283572 8564_ $$uhttps://juser.fz-juelich.de/record/283572/files/Schluesseltech_113.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000283572 909CO $$ooai:juser.fz-juelich.de:283572$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000283572 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000283572 9141_ $$y2016
000283572 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131022$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000283572 9131_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000283572 920__ $$lyes
000283572 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000283572 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000283572 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x2
000283572 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x3
000283572 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kNeutronenstreuung ; JCNS-1$$lNeutronenstreuung$$x4
000283572 9801_ $$aUNRESTRICTED
000283572 9801_ $$aFullTexts
000283572 980__ $$abook
000283572 980__ $$aVDB
000283572 980__ $$aUNRESTRICTED
000283572 980__ $$aproc
000283572 980__ $$aI:(DE-Juel1)PGI-7-20110106
000283572 980__ $$aI:(DE-82)080009_20140620
000283572 980__ $$aI:(DE-Juel1)IAS-1-20090406
000283572 980__ $$aI:(DE-Juel1)JCNS-2-20110106
000283572 980__ $$aI:(DE-Juel1)JCNS-1-20110106
000283572 981__ $$aI:(DE-Juel1)PGI-1-20110106
000283572 981__ $$aI:(DE-Juel1)IAS-1-20090406
000283572 981__ $$aI:(DE-Juel1)JCNS-2-20110106