000283575 001__ 283575
000283575 005__ 20240711092244.0
000283575 0247_ $$2Handle$$a2128/10390
000283575 0247_ $$2ISSN$$a1866-1793
000283575 020__ $$a978-3-95806-117-0
000283575 037__ $$aFZJ-2016-01889
000283575 041__ $$aEnglish
000283575 1001_ $$0P:(DE-Juel1)145779$$aStournari, Vasiliki Kallirroi$$b0$$eCorresponding author$$gmale$$ufzj
000283575 245__ $$aThermo-mechanical Properties of Mixed Ionic-Electronic Conducting Membranes for Gas Separation$$f- 2016-04-26
000283575 260__ $$aJülich$$bForschungszentrum Jülich GmbH Zentralbibliothek, Verlag$$c2016
000283575 300__ $$a167 S.
000283575 3367_ $$0PUB:(DE-HGF)3$$2PUB:(DE-HGF)$$aBook$$mbook
000283575 3367_ $$0PUB:(DE-HGF)11$$2PUB:(DE-HGF)$$aDissertation / PhD Thesis$$bphd$$mphd$$s1461663342_18337
000283575 3367_ $$02$$2EndNote$$aThesis
000283575 3367_ $$2DRIVER$$adoctoralThesis
000283575 3367_ $$2BibTeX$$aPHDTHESIS
000283575 3367_ $$2DataCite$$aOutput Types/Dissertation
000283575 3367_ $$2ORCID$$aDISSERTATION
000283575 4900_ $$aSchriften des Forschungszentrums Jülich Reihe Energie & Umwelt / Energy & Environment$$v304
000283575 502__ $$aRWTH Aachen, Diss., 2015$$bDr.$$cRWTH Aachen$$d2015
000283575 520__ $$aIn this work membrane materials with mixed ionic / electronic and protonic / electronic conductivity for oxygen (Oxygen Transport Membranes - OTM) and hydrogen separation (Hydrogen Transport Membranes - HTM) were investigated regarding the thermo-mechanical properties. In case of OTM, perovskite-type materials Ba$_{0.5}$Sr$_{0.5}$(Co$_{0.8}$Fe$_{0.2}$)$_{1-x}$Zr$_{x}$O$_{3-\delta}$ (BSCF·Z100x), where x = 0.01, 0.03, 0.05 and 0.1, as well as alternative SrTi$_{1-x}$Fe$_{x}$O$_{3-\delta}$ (ST·F100x) with x= 0.03, 0.05 and 0.07, while the fluorite structured La$_{5.4}$WO$_{12-\delta}$ (LWO54) and Nd$_{5.5}$WO$_{12-\delta}$ (NWO55) were investigated as HTM membrane materials. Compressive creep tests were carried out for all compounds in different temperature (900 – 1450 °C)and stress regimes (20 – 100 MPa) in air, vacuum and Ar / 4 % H$_{2}$ 2.5 % H$_{2}$O-atmosphere. The observed activation energies and stress exponents point to diffusional creep as the predominant creep mechanism. In case of BSCF-Z100·x ceramics, this was further supported by the fact that the grain-size-normalized steady-state creep ratevaries little for the different BSCF-Z100·x compositions. It was confirmed that Zr substitution does not significantly affect the thermal hysteresis of the creep behavior as observed for pure BSCF. Regarding ST∙F100x and LWO54 materials all materials maintained their main structure after the tests. Coming to the HTM materials, the creep mechanism for LWO54 was suggested to be cation aided diffusion with a common migration of La$^{3+}$ / W$^{6+}$ as rate controlling species along grain boundaries / through lattice. ST∙F100x, LWO54 and NWO55 materials are promising membrane materials regarding creep resistance. Elastic and fracture properties were determined for dense and porous tape casted LWO54. Young’s moduli via Vickers indentation, ring-on-ring and impulse excitation technique at room and elevated temperatures show a decrease by ~ 20 % when the material is heated up from room temperature to 1000 °C in air and Ar / 4 % H$_{2}$ atmosphere. Strength decreases by ~30 % when it is heated up to 1000 °C in air for dense materials while at room temperature it can be increased by a factor ~ 2 for homogeneous microstructure. Subsequent fractographic analysis reveals agglomerates of large irregular pores as fracture origins. For porous LWO54 the strength is decreasing with porosity and the presence of the secondary phase La$_{6}$W$_{2}$O$_{15}$. Micromechanical properties at room temperature by Vickers indentation test are also determined.
000283575 536__ $$0G:(DE-HGF)POF3-899$$a899 - ohne Topic (POF3-899)$$cPOF3-899$$fPOF III$$x0
000283575 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1
000283575 650_7 $$xDiss.
000283575 8564_ $$uhttps://juser.fz-juelich.de/record/283575/files/Energie_Umwelt_304.pdf$$yOpenAccess
000283575 8564_ $$uhttps://juser.fz-juelich.de/record/283575/files/Energie_Umwelt_304.gif?subformat=icon$$xicon$$yOpenAccess
000283575 8564_ $$uhttps://juser.fz-juelich.de/record/283575/files/Energie_Umwelt_304.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000283575 8564_ $$uhttps://juser.fz-juelich.de/record/283575/files/Energie_Umwelt_304.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000283575 8564_ $$uhttps://juser.fz-juelich.de/record/283575/files/Energie_Umwelt_304.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000283575 8564_ $$uhttps://juser.fz-juelich.de/record/283575/files/Energie_Umwelt_304.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000283575 909CO $$ooai:juser.fz-juelich.de:283575$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000283575 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000283575 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000283575 9141_ $$y2016
000283575 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145779$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000283575 9131_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000283575 920__ $$lyes
000283575 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x0
000283575 9801_ $$aUNRESTRICTED
000283575 9801_ $$aFullTexts
000283575 980__ $$aphd
000283575 980__ $$aVDB
000283575 980__ $$aUNRESTRICTED
000283575 980__ $$abook
000283575 980__ $$aI:(DE-Juel1)IEK-2-20101013
000283575 981__ $$aI:(DE-Juel1)IMD-1-20101013