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Abstract

First, the place of kinetic theory among other mathemati-

cal models to describe plasma physics is discussed. Next,

some basic kinetic concepts are introduced and the kinetic

plasma equations are described. The use of these equa-

tions is then demonstrated considering electron plasma

oscillations, a simple example of collective behaviour,

and deriving a fundamental plasma parameter, viz. the

plasma frequency, a fundamental plasma parameter. The

a surprising fundamental phenomenon Landau damping

is briefly discussed.

1 Introduction: theoretical models

in plasma physics

Different mathematical models exist for different kinds of

plasma processes. The model to be used or applied de-

pends on the kind of phenomenon to be studied. Three

kinds of theoretical description can be distinguished on

the basis of the chosen approach [1]:

1. the theory of the motion of individual charged par-

ticles in given magnetic and electric fields; e.g. the

motion of a charged, non-relativistic particle is de-

scribed by

m
dv

dt
= q(E+ v ×B) , (1)

where E(r, t) and B(r, t) are given solutions of the

Maxwell’s equations, and one has to solve for the

particle velocity v(r, t). This model is useful to

describe gyration of particles in a magnetic field

and adiabatic invariants of this cyclotron motion, the

magnetic mirror effect, drifts, etc. But plasmas usu-

ally contain a lot of particles, e.g. a large Corona

Mass Ejection on the Sun involves up to 1030 par-

ticles, requiring a different model approach;

2. the kinetic theory of a such collections of charged

particles, describing plasma behavior on a micro-

scopic scale by means of particle distribution func-

tions fe,i(r,v, t), the evolution of which is most gen-

erally described by the Boltzmann dissipative equa-

tion (see below). There exists an alternative Particle-

In-Cell (PIC) approach, however, in which the par-

ticles are modelled as ’super particles’ or ’particle

clouds’ which are accelerated by the forces (Lorentz,

gravitational, etc.). This alternative approach will

described in module KT-2;

3. the fluid theory (MHD), describing plasma behavior

on a macroscopic scale in terms of averaged (over

v) functions of only r and t. The three basic steps

to get from kinetic theory to the plasma model are

discussed in the last section of this contribution.

Clearly, this is a rough division of model approaches and

there exist combinations, like hybrid models with one

or more species described in the fluid theory and other

species described in kinetic theory. Here, we will focus

on the kinetic plasma theory.

Why kinetic theory?

In the single particle orbit theory mentioned above, the in-

teractions between the particles is ignored. This is a valid

assumption only when the density of the charged parti-

cles is low enough. Plasmas, however, exhibit collective
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behaviour because of the large amount of interacting par-

ticles involved. As a result, a statistical approach can be

used to analyse its dynamics and this is precisely what

kinetic plasma theory does. In this sense, the kinetic de-

scription of plasma is fundamental. The position of par-

ticles is known in phase space, the space of all possible

values of position and momentum variables, making even

the electron scale accessible.

Of particular importance are kinetic or micro-

instabilities. These are short wavelength - high frequency

modes of the system that may grow in amplitude when the

charged particle species in a collisionless plasma posses

a non-maxwellian velocity distribution. In other words,

these modes are driven unstable by the kinetic anisotropy

of the plasma particles which provides a source of free

energy. The velocity distributions (microstates) measured

in-situ in space plasmas, for instance, often show de-

partures from thermodynamic (Maxwellian) equilibrium

in the form of temperature anisotropy, plasma flows or

beams (’strahls’), suprathermal tails, etc. These deviations

from thermal equilibrium and the micro-instabilities they

induce can be described only with a kinetic approach.

Here, we will not elaborate on the derivation of the

equation(s) describing the evolution of the plasma, which

was introduced by Ludwig Boltzmann in 1872 and con-

stitutes a vast amount of theoretical analysis (See, e.g. the

comprehensive treatise by Balescu [2]), but merely ex-

ploit the Boltzmann equation, one of the end results of

this work.

Closely following Goedbloed and Poedts [1], we will

first introduce some basic kinetic concepts (Section 4) and

consider a simple example of collective behaviour (Sec-

tion 5), viz. electron plasma oscillations, and derive the

plasma frequency, a fundamental plasma parameter. The

(Landau) damping of these oscillations through kinetic ef-

fects is then discussed briefly in Section 5. It will also be

discussed in modules KW-1 and KW-2 in this school. In

module KT-2, numerical simulation models based on ki-

netic theory will be discussed and some of the impressive

results will be demonstrated there.

2 Some basic plasma parameters

In Eq. (1) we did not specify the mass m and the charge

q of the particles. Clearly, they correspond to either elec-

trons (m = me , q = −e) or ions with mass number A
and charge number Z (i.e. multiples of the proton mass

and charge: m = mi = Amp , q = Ze). When we

consider such a charged particle in a constant magnetic

field in the z-direction, in the absence of an electric field:

B = Bez , E = 0 , we can get some insight by perform-

ing two simple vector operations on Eq. (1). First project

this equation B and using vector identities, we get that

v‖ = const because

m
dv‖

dt
= 0 . (2)

When we project the same equation on v, we get

d

dt
( 12mv2) = 0 → 1

2mv2 = const , (3)

which in combination with (2) yields that also v⊥ =
const. because

1
2mv2⊥ = const. (4)

Solving Eq. (1) more systematically, using v = dr/dt =
(ẋ, ẏ, ż), we get two coupled differential equations de-

scribing the motion in the perpendicular plane:

ẍ− Ω ẏ = 0 ,
(5)

ÿ +Ω ẋ = 0 ,

where

Ω ≡ |q|B
m

, (6)

is the gyro- or cyclotron frequency.

We here do not elaborate on the derivation (see [1]), but

the helical orbit consists of gyration (a periodic circular

motion) ⊥ B about a the guiding centre and with a the

gyro- or cyclotron radius

R ≡ v⊥
Ω

= const , (7)

and inertial motion ‖ B. The magnetic field B thus deter-

mines the geometry of the plasma.

Remarks that electrons and ions gyrate in opposite di-

rections (Fig. 1). Due to their mass difference, their gyro-

frequencies and gyro-radii are quite different:

Ωe ≡ eB

me
≫ Ωi ≡

ZeB

mi
,

(8)
Re ≡ v⊥,e

Ωe
≪ Ri ≡

v⊥,i

Ωi
(assuming Te ∼ Ti) .

67



Figure 1: Gyration of electrons and ions in a mag-

netic field (source: [1]).

Inserting a magnetic field B = 3T (= 30 kgauss), typical

for tokamaks, and the values for e, me, and mp, we find

for the angular frequencies of protons and electrons

Ωe = 5.3× 1011 rad s−1 (i.e., a freq. of 84GHz) ,
(9)

Ωi = 2.9× 108 rad s−1 (i.e., a freq. of 46MHz) .

Considering particles with thermal speed v⊥ = vth ≡√
2kT/m we can estimate the gyro-radii. For electrons

and protons at T̃ = 10 keV, i.e. Te = Ti = 1.16× 108 K,

we obtain

vth,e = 5.9× 107 ms−1 ⇒ Re ≈ 0.1mm ,
(10)

vth,i = 1.4× 106 ms−1 ⇒ Ri ≈ 5mm .

Adding a constant background electric field perpendic-

ular to the magnetic field, i.e. B = Bez , E = Eey ,

only slightly complicates the analysis. However, in this

case the gyration is superposed with a constant ’drift’ in

x−direction. Hence, the perpendicular electric field re-

sults in the so-called E×B drift (see [1]).

3 Kinetic model equations

The equations of the kinetic model consist of equa-

tions for the particle distribution functions combined with

Maxwell’s equations (13) which determine the electric

and magnetic fields E(r, t) and B(r, t).

3.1 The Boltzmann equation

Let us consider a plasma that consists of electrons and one

kind of ions. Clearly, the information on the individuality

of the particles is lost in the statistical description. How-

ever, the time-dependent distribution functions fα(r,v, t)
for the electrons and ions (α = e, i) contain relevant physi-

cal information on the plasma as a whole. The distribution

functions express the density of the representation points

of particles of type α in the six-dimensional phase space

which is formed by the three position coordinates (x, y, z)
and the three velocity coordinates (vx, vy, vz) (see, e.g.,

Bittencourt [3]). In other words, fα(r,v, t) d
3r d3v rep-

resents the probable number of particles of type α in

the six-dimensional volume element d3r d3v centred at

(r,v). We here assume that the total number of parti-

cles, Nα ≡
∫∫

fαd
3r d3v , is constant. This is, of course,

not valid for plasmas that are in thermal and/or chemical

non-equilibrium, like the partially-ionized plasmas in the

lower solar atmosphere (photosphere and lower chromo-

sphere) and thermonuclear plasmas in which fusion reac-

tions create and annihilate particles. In such cases, more

than two distribution functions are needed, e.g. also one

for neutrals in the case of the solar photosphere, and the

respective total number of particles will not be constant.

We now make a distinction between the motion of in-

dividual particles and the motion of a collection of their

representative points in phase space, which is somehow

similar to the motion of a swarm of bees (versus the mo-

tion of a particular bee in the swarm). The ’swarm’ of

representative points is described by the the distribution

function fα(r,v, t), and its motion is given the total time

derivative of fα, using the chain rule we get:

dfα
dt

≡ ∂fα
∂t

+
∂fα
∂r

· dr
dt

+
∂fα
∂v

· dv
dt

=
∂fα
∂t

+v· ∂fα
∂r

+
qα
mα

(E+ v ×B)· ∂fα
∂v

,(11)

where Eq. (1) has been used inserted in the second line.
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Here, the scalar products involving derivatives with re-

spect to the vectors r and v simply denote sums over

the products of the vector components, i.e. v · ∂/∂r ≡
vx ∂/∂x+vy ∂/∂y+vz ∂/∂z , and idem for the term with

∂/∂v . Notice also the subtle difference between d/dt for

the total time derivative and d/dt for ordinary time deriva-

tives. Liouville’s theorem ([5])states that, in the absence

of binary interactions between particles, dfα/dt = 0, i.e.

the density of representative points in phase space remains

constant.

Clearly, the behaviour of a collection of particles only

becomes interesting when these particles collide with

each other, i.e. interact. In 1872, Ludwig Boltzmann

derived an equation describing the time variation of the

distribution functions of electrons and ions. This kinetic

equation, called the Boltzmann equation reads:

∂fα
∂t

+v · ∂fα
∂r

+
qα
mα

(E+ v ×B) · ∂fα
∂v

=

(
∂fα
∂t

)

coll

.

(12)

Note that here E(r, t) and B(r, t) consist of the contribu-

tions of the external fields plus that of the averaged inter-

nal fields originating from the long-range inter-particle in-

teractions. The right-hand side represents the effect of an

unspecified collision term which should model the short-

range inter-particle interactions, or ’collisions’. These are

the large-angle Coulomb collisions resulting from the cu-

mulation of the many small-angle velocity changes. A

first important objective of kinetic theory is to distinguish

between different (long- and short-range) interactions and

binary collisions and to determine on what ranges they

are valid, yielding different forms of this collision term.

One choice leads to the Landau collision integral (1936)

[7]. And when only the accumulated effects of the small-

angle collisions are taken into account, the above equa-

tion leads to the Fokker–Planck equation; and neglecting

all collisions, i.e. setting the RHS equal to zero, leads to

the Vlasov equation (1938) [12]. Another choice leads to

the Landau collision integral (1936) [7].

3.2 Maxwell’s equations

In order to obtain a closed system of equations the Boltz-

mann equation (12) (or the Vlasov equation in case

collisions can be ignored) for the distribution functions

fα(r,v, t) , are combined with Maxwell’s equations (13),

determining the electric and magnetic fields E(r, t) and

B(r, t) , and providing expressions (14) for the charge and

current density source terms τ(r, t) and j(r, t) . In mksA

units these equations are given by:





∇×E = −∂B

∂t
(Faraday) ,

∇×B = µ0j+
1

c2
∂E

∂t
(‘Ampère’), c2 = (ǫ0µ0)

−1,

∇ ·E =
τ

ǫ0
(Poisson) ,

∇ ·B = 0 (no magnetic monopoles) .

(13)

We have ignored polarisation and magnetisation effects,

i.e. ǫ = ǫ0 and µ = µ0 so that D = ǫ0E and H =
(µ0)

−1B , since these effects are absorbed in the defini-

tions of charge and current density:





τ =
∑

α qαnα

(α = e, i).

j =
∑

α qαnαuα

(14)

Here, nα and uα are the particle density and the macro-

scopic velocity of particles of type α.

The charge and current density source terms τ(r, t) and

j(r, t) are related to the particle densities and the average

velocities:

nα(r, t) ≡
∫

fα(r,v, t) d
3v ,

and τ(r, t) ≡
∑

qαnα , (15)

uα(r, t) ≡
1

nα(r, t)

∫
vfα(r,v, t) d

3v ,

and j(r, t) ≡
∑

qαnαuα . (16)

This completes the microscopic equations.

Solving these kinetic equations in seven dimensions

(with the details of the single particle motions entering the

collision integrals) is a formidable task, even with the help

of present-day supercomputers. Hence, whenever possi-

ble, i.e. when the physical phenomenon that is studied al-

lows it, modelers will look for a macroscopic reduction.

Here, however, we will stick to the kinetic equations and

take up the challenge of solving them.
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4 Moment reduction

Macroscopic equations, i.e. equations that do not involve

details of velocity space any more can be obtained by ex-

panding in a finite number of moments of the Boltzmann

equation (12). These moments are obtained by first mul-

tiplying the equation with a function χ(v) and then inte-

grating over velocity space. The function χ consists of

powers of the velocity:

χ(v) =





1, zeroth moment;

v, first moment;

v2, second moment;

. . . ,

(17)

and the procedure is truncated after a finite number (5,

10, 20. . . ) of such moments. Clearly, taking moments

of the Boltsmann equation involves the moments of the

distribution function itself. For instance, the zeroth mo-

ment is associated with the particle density nα(r, t) and

the first moment is associated with the average velocity

〈v〉α ≡ uα(r, t), defined above. This expansion in mo-

ments clearly needs to be truncated in order to be prac-

tical. A popular truncation occurs already after the five

moments (one scalar + one vector + one scalar) indicated

explicitly in Eq. (17). This truncation is justified in the

transport theory. Macroscopic variables 〈g〉α(r, t) gen-

erally appear as averages of some phase space function

g(r,v, t) over the velocity space, i.e.

〈g〉α(r, t) ≡
1

nα(r, t)

∫
g(r,v, t) fα(r,v, t) d

3v .

(18)

Clearly, this definition assumes or requires that the distri-

bution functions fα decrease fast enough with v → ∞ in

order to yield a finite answer.

The systematic procedure of taking moments of the

Boltzmann equations also involves the determination of

the different moments of the collision term in the RHS.

The collision operator

(
∂fα
∂t

)

coll

≡ Cα , (19)

represents evolution of fα due to local collisions. It can

be decomposed in contributions Cαβ due to collisions of

particles α (e.g. electrons) with particles β (i.e. electrons

as well as ions):

Cα =
∑

β

Cαβ . (20)

So, e.g. Ci is the sum of the intraspecies collision operator

Cii, which represents the effect of ion-ion collisions, and

the interspecies collision operator Cie, which represents

the effect on the ions of ion-electron collisions. Cα is

thus an operator which maps functions of velocity space,

fi(v) and fe(v), to a function of velocity space, Cα(v).
The collision of course respect some constraints. For

instance, in the absence of fusion reactions, there is con-

servation of mass, i.e. the total number of particles α at a

certain position does not change by collisions with parti-

cles β: ∫
Cαβ d

3v = 0 . (21)

In a similar way, conservation of momentum yields

∫
vCii d

3v = 0 , (22)

and ∫
||v||2(Ci + Ce) d

3v = 0 ; (23)

while conservation of energy yields

∫
vCii d

3v = 0 , (24)

and ∫
||v||2(Ci + Ce) d

3v = 0 . (25)

More details of the derivation of these expressions and

on the procedure in general can be found in Goedbloed

and Poedts [1]. In order to give an idea of the proce-

dure, we will here only derive the lowest moment equa-

tion, which describes mass conservation.

As mentioned above, the zeroth moment is obtained by

integrating the Boltzmann equation (Eq. (12)) over veloc-

ity space. Doing this term by term, we get subsequently:

∫
∂fα
∂t

d3v =
∂nα

∂t
(def. (15)) ,

∫
v · ∂fα

∂r
d3v = ∇ · (nαuα) (def. (16)) ,
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∫
qα
mα

(E+v×B)· ∂fα
∂v

d3v = 0 (int. by parts),

∫
Cα d3v = 0 (summing Eq. (21)) .

The continuity equation for particles of species α is ob-

tained by adding these four expressions, yielding

∂nα

∂t
+∇ · (nαuα) = 0 . (26)

Similarly, the first moment of the Boltzmann equation is

obtained by multiplying it with mαv and integrating this

expression over the velocities. This yields the momentum

equation:

∂

∂t
(nαmαuα)+∇·

(
nαmα〈vv〉α

)
−qαnα(E+uα×B)

=

∫
Cαβ mαv d3v . (27)

The scalar second moment of Eq. (12) is then obtained

by multiplying with 1
2mαv

2 and integrating over velocity

space. This yields the energy equation:

∂

∂t

(
nα

1
2mα〈v2〉α

)
+∇·

(
nα

1
2mα〈v2v〉α

)
−qαnαE·uα

=

∫
Cαβ

1
2mαv

2 d3v . (28)

See [1] for the explicit steps in the derivation of these

equations.

This chain of moment equations can be continued in-

definitely. Notice that each moment introduces a new un-

known whose temporal evolution is described by the next

moment of the Boltzmann equation. However, the infi-

nite chain must be truncated to be useful. In fluid theories

truncation is just after the above five moments: the conti-

nuity equation (26) (scalar), the momentum equation (27)

(vector), and the energy equation (28) (scalar), by mak-

ing additional assumptions. In (very) broad outlines, the

procedure can be summarized as follows:

(a) First, split the particle velocity v into an average part

uα and a random part ṽα, i.e.

ṽα ≡ v − uα , where 〈ṽα〉 = 0 . (29)

In this way thermal quantities can be defined, like

Tα(r, t)≡
mα

3k
〈ṽ2α〉 (temperature) , (30)

Pα(r, t)≡nαmα 〈ṽαṽα〉 = pαI+ πα ,

pα ≡ nαkTα (stress tensor),(31)

hα(r, t)≡ 1
2nαmα 〈ṽ2αṽα〉 (heat flow) , (32)

Rα(r, t)≡mα

∫
Cαβṽαd

3v (momentum transfer),(33)

Qα(r, t)≡ 1
2mα

∫
Cαβ ṽ

2
α d3v (heat transfer) . (34)

Note that in this notation I is the unit tensor, i.e. πα rep-

resents the off-diagonal terms of the pressure tensor P.

For instance, the Maxwell distribution for thermal equi-

librium:

f0
α(r,v, t) = nα

(
mα

2πkTα

)3/2

exp

(
−mαṽ

2
α

2kTα

)
, (35)

is consistent with these definitions and makes the LHS of

the Boltzmann equation (12) vanish. This means that the

collision term on the RHS should vanish too, i.e. when the

two distributions have equal average velocities (ue = ui)

and temperatures (Te = Ti). The deviations from this

thermal equilibrium and the way in which collisions cause

relaxation to thermal equilibrium, is what plasma kinetic

theory is concerned with (Braginskii [4]).

(b) The temperature evolution equation is then trans-

formed into a pressure evolution equation by introducing

the ratio of specific heats, γ ≡ Cp/Cv = 5/3. The re-

sulting equations for nα, uα, and pα then appear rather

macroscopic, but still hide unsolved kinetic dependences

involving higher order moments and variables which in-

volve the unspecified collision operator.

(c) The obtained truncated set of moment equations is

then finally closed by exploiting the transport coefficients

derived by transport theory (Braginskii [4], Balescu [2]),

which concerns the deviations from local thermodynamic

equilibrium, expressed by Eq. (35). In this theory the dis-

tribution functions are developed in powers of a small pa-

rameter measuring these deviations. This results in trans-

port coefficients, determining relations between the ther-

mal quantities defined in Eqs. (30)–(34) and the gradients

of the macroscopic quantities. The second objective of ki-

netic theory is to provide these coefficients, which is again

a formidable task.
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Following [1], we will now present an application of

the two-fluid description (Section 5). It will be highly

simplified in the sense that most of the complicated terms

discussed above do not occur. Yet, this simple application

illustrates a very important basic physical mechanism at

work, namely collective electrostatic oscillations. After

that, we will return to the kinetic description in terms of

distribution functions and discuss how velocity space ef-

fects lead to Landau damping, a surprising kinetic phe-

nomenon (Section 6).

5 Collective phenomena: plasma os-

cillations

Chen [6] defines a plasma as a quasi-neutral gas of

charged and neutral particles which exhibits collective

behaviour. The typical size of a region in the plasma over

which charge imbalance due to thermal fluctuations may

occur, is the Debye length. In the present section, we will

extend these electric field concepts. We will first study

perturbations of quasi-neutrality in a cold plasma by typi-

cal plasma oscillations which are called Langmuir waves

(1929) 1. We then study how these oscillations are af-

fected by finite temperatures; first by including a finite

pressure, next by taking into account velocity space ef-

fects by applying the kinetic equations, which will lead to

the concept of Landau damping.

5.1 Cold plasma oscillations

We start by considering a highly simplified case, viz. that

of a cold plasma in the absence of a magnetic field (B =
0). In other words, all thermal effects are neglected (Pα,

hα, Rα, and Qα vanish). As a result, all the complicated

terms in the equations of motion vanish and the energy

equations can be dropped. For cold plasma oscillations

we thus just need to consider the continuity equations,

∂nα

∂t
+∇ · (nαuα) = 0 (α = e, i) , (36)

and the simplified (B = 0) momentum equations,

mα

(∂uα

∂t
+ uα · ∇uα

)
= qα E (α = e, i) . (37)

1named after the author who also introduced the term ‘plasma’ in

1923

The Poisson equation (13)(c) then enables us to deter-

mine the electric field in a self-consist manner, where the

charge density is obtained from Eq. (14)(a):

∇ ·E =
τ

ǫ0
=

e

ǫ0
(Zni − ne) . (38)

Remark that these equations form a complete set for the

variables ne,i(r, t), ue,i(r, t), and E(r, t) which describe

the problem of electrostatic oscillations.

One of the most fundamental properties of plasmas is

that they maintain approximate charge neutrality. As a

matter of fact, charge imbalances on a macroscopic scale

L would create huge electric fields (E ∼ τL/ǫ0) which

would accelerate the electrons and thus neutralise these

imbalances extremely fast. As a result, the plasma main-

tains almost perfect charge neutrality.

Charge imbalances do occur, however, on a finer time

and length scale, viz. in the form of typical oscillations.

For these plasma oscillations, we can consider the heavy

ions (mi ≫ me) as a fixed (ui = 0) neutralising back-

ground in which only the light electrons move (ue 6= 0).

When a small region inside the plasma is then perturbed,

by displacing the electrons in that region, the charge neu-

trality is disturbed (ne 6= Zni). The problem is then com-

pletely determined by the electron variables (the two ion

equations (36) and (37) for α = i may be dropped):

ne ≈ n0 + n1(r, t) ,
(39)

ue ≈ u1(r, t) ,

whereas the ion variables simplify to

ni ≈ n0/Z = const , ui ≈ 0 . (40)

Here, the subscripts 0 and 1 refer to the constant back-

ground and the (small) perturbations, respectively. The

small density perturbation |n1(r, t)| ≪ n0 occurs in a

small region of the plasma. We can thus linearize the

equations, i.e. we can neglect terms involving products

of perturbations since these are much smaller than the lin-

ear terms. As a result, the small electric field E1 that is

created is proportional to n1 and creates a small electron

flow velocity u1 , which is also proportional to n1.

A complete set of equations is thus obtained, consisting

of the linearized electron density equation (36), the mo-

mentum equation (37) (both with α = e), and the Poisson
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equation (38):

∂n1

∂t
+ n0∇ · u1 = 0 ,

me
∂u1

∂t
= −eE1 , (41)

∇ ·E1 =
τ1
ǫ0

= − e

ǫ0
n1 .

Eliminating u1 and E1 then yields a single wave equation

for n1:

∂2n1

∂t2
= −n0∇· ∂u1

∂t
=

n0e

me
∇·E1 = − n0e

2

ǫ0me
n1 . (42)

5.2 Plasma frequency and Debye length

The solutions of the wave equation (42) can be written

in the form n1(r, t) = n̂1(r) exp(−iωt). They represent

plasma oscillations, which are electron density oscilla-

tions with a characteristic frequency, called the electron

plasma frequency:

ω = ±ωpe , ωpe ≡
√

n0e2

ǫ0me
. (43)

This frequency is one of the fundamental parameters of

a plasma and is usually very high (because me is very

small). It provides a diagnostic for the determination

of the plasma density since it depends only the plasma

density. In tokamak plasmas, a typical density n0 =
1020 m−3 gives

ωpe = 5.7× 1011 rad s−1 (i.e. 91GHz) ,

which is of the same order of magnitude as the electron

cyclotron frequency for tokamaks with very strong mag-

netic fields (B ∼ 3T).

Remark that in cold plasma theory the spatial form of

the amplitude n̂1(r) of the plasma oscillations is not de-

termined. This is different for ‘warm’ plasmas, where de-

viations from charge neutrality due to thermal fluctuations

occur in small regions of a size of the order of the Debye

length

λD ≡
√

ǫ0kBTe

n0e2
=

vth,e√
2ωpe

. (44)

Note that we here indicate the Boltzmann constant with a

subscript, kB, to distinguish it from the wave number k of

the waves that now enters the analysis. For thermonuclear

plasmas, with T̃ = 10 keV, vth,e = 5.9 × 107 ms−1,

ωpe = 5.7× 1011 rad s−1 gives

λD = 7.4× 10−5 m ≈ 0.07mm ,

i.e. the Debye length is of the order of the electron gyro-

radius Re.

5.3 (Finite pressure) Plasma oscillations

In warm plasmas, the frequency of the plasma oscilla-

tions becomes dependent on the wavelength because of

the above-mentioned thermal fluctuations. The thermal

contributions may be computed by means of the two-fluid

equations for an unmagnetised plasma (B = 0), assum-

ing an isotropic pressure and neglecting heat transport and

collisions. Assuming immobile ions again and linearising

these equations for the electrons, like we did before for a

cold plasma, we now get a modified eigenvalue problem

where the pressure p0 = n0kBT0, i.e. the temperature, of

the background plasma enters:

∂n1

∂t
+ n0∇ · u1 = 0 , (45)

n0me
∂u1

∂t
+∇p1 = −en0E1 , (46)

∂p1
∂t

+ γp0∇ · u1 = 0 , (47)

∇ ·E1 = − e

ǫ0
n1 . (48)

Assuming plane waves in the x-direction, and ignoring

spatial dependencies in the y- and z-directions,

n1(x, t) = n̂1e
i(kx−ωt), (49)

(and similar expressions for u1, p1, E1), the gradients

∇ → ikex and the time derivatives ∂/∂t → −iω, so that

Eqs. (45)–(48) become an algebraic system of equations

for the amplitudes n̂1, û1, p̂1, and Ê1. The dispersion

equation is obtained from the determinant and reads

ω2 = ω2
pe(1 + γk2λ2

D) . (50)

Notice that here, since the oscillations are one-

dimensional, we should exploit the value γ = 3 (see

Chen [6], Chapter 4). Remark that the (c)old result (43)

73



is recovered for long wavelengths, where k2λ2
D ≪ 1, but

there is a large effect now on the oscillations for wave-

lengths of the order of or smaller than the Debye length.

However, However, this thermal correction of the depen-

dence of ω on k turns out to be incomplete as misses the

damping obtained in the proper kinetic derivation. We

will discuss this briefly in the next section.

6 Collective phenomena: Landau

damping

Following Goedbloed and Poedts [1], we remark that a

more refined analysis of longitudinal plasma oscillations

for ‘warm’ plasmas should take velocity space effects

into account, exploiting the Vlasov, or collisionless Boltz-

mann, equation (12) (with vanishing RHS) for the per-

turbations f1(r,v, t) of the electron distribution function.

Considering again plane wave solutions ∼ exp i(k · r −
ωt), one immediately runs into a mathematical problem:

∂f1
∂t

+v · ∂f1
∂r

= −i(ω−k ·v) f1 =
e

me
E1 ·

∂f0
∂v

, (51)

so that inversion of the operator ∂/∂t + v · ∂/∂r, to ex-

press f1 in terms of E1, leads to singularities for every

ω − k · v = 0 . Landau (1946) [8] performed a proper

treatment of the related initial value problem, and showed

that these singularities give rise to damping of the plasma

oscillations, now called Landau damping. Since there is

no dissipation as we are considering a purely collisionless

medium here, this is a surprising phenomenon! Twenty

years later, Malmberg and Wharton [9] verified the phe-

nomenon of Landau damping experimentally. In fact,

later (1968) these authors also demonstrated that the in-

formation contained in the initial signal may be recovered

by means of plasma wave echos, i.e. it is not lost.

Van Kampen (1955) [10, 11] considered a complemen-

tary approach to the electrostatic plasma oscillations by

means of a normal mode analysis. In this approach, the

singularities ω − k · v = 0 lead to a continuous spec-

trum of singular, δ-function type, modes (the Van Kam-

pen modes), which constitute a complete set of ‘improper’

eigenmodes for this system. Damping occurs because of

phase mixing, a package of those modes rapidly loses its

spatial phase coherence.

6.1 Landaus solution of the initial value

problem

For a more careful analysis, which is beyond the level

of this introductory chapter, we refer to Goedbloed and

Poedts [1].

Landau’s careful study of the initial value problem of

electrostatic plasma oscillations shows that there is an im-

portant contribution of the singularities v = vph ≡ ω/k
where the particles are in resonance with the phase veloc-

ity of the waves. For a Maxwell distribution, the solution

of the dispersion equation (obtained by Landau) for long

wavelengths (kλD ≪ 1) is given by

ω ≈ ωpe

{
1+ 3

2k
2λ2

D

− i
√

π
8 (kλD)

−3 e−
1
2 (kλD)−2−

3
2

}
, (52)

where the imaginary part represents damping of the

waves. For long wavelengths, this damping is exponen-

tially small. For short wavelengths (kλD ∼ 1), the damp-

ing becomes very strong so that wave motion with wave-

lengths smaller than the Debye length becomes impossi-

ble.

7 From kinetic theory to fluid de-

scription

In this section we come back to the text of Goedbloed

and Poedts [1]. We have seen that kinetic theory involves

the detailed evolution of the distribution functions on very

short length and time scales, such as the Debye length λD

and the plasma frequency ωpe. The development of the

fluid picture of plasmas from the kinetic theory involves

three major steps, illustrated in Fig. 2:

(a) Collisionality The formulation of the lowest mo-

ments (26)–(28) of the Boltzmann equation in Section 4

and the transport closure relations mentioned there, was

the first step, yielding a system of two-fluid equations in

terms of the ten variables ne,i, ue,i, Te,i. To establish the

two fluids, the electrons and ions must undergo frequent

collisions:

τH ≫ τi

[
≫ τe

]
, (53)
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Figure 2: Different theoretical plasma models and

their connections.

with τH the time scale on which the hydrodynamic de-

scription is valid, while τe and τi indicate the collisional

relaxation times of the electrons and ions respectively.

(b) Macroscopic scales Since the two-fluid equations

still involves the small length and time scales of the funda-

mental phenomena we have encountered, viz. the plasma

frequency ωpe, the cyclotron frequencies Ωe,i, the Debye

length λD, and the cyclotron radii Re,i, the essential sec-

ond step towards the magnetohydrodynamics (MHD) de-

scription of plasmas is to consider large length and time

scales:

λMHD ∼ a ≫ Ri , τMHD ∼ a/vA ≫ Ω−1
i . (54)

Hence,the larger the magnetic field strength, the more

easy these conditions are satisfied. On these scales, the

plasma is considered as a single conducting fluid without

distinguishing its individual species.

(c) Ideal fluids The third and final step is to consider

the plasma dynamics on time scales faster than the slow

dissipation connected with the decay of the macroscopic

variables, in particular the resistive decay of the magnetic

field:

τMHD ≪ τR ∼ a2/η . (55)

This condition is well satisfied for the relatively small

sizes of fusion machines, and very easily for the huge

sizes of astrophysical plasmas, and leads to the model of

ideal MHD.
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