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ABSTRACT

A general introduction to ideal magnetohydrodynamic

(MHD) stability of tokamak plasmas is given, using linear

perturbations of the ideal MHD equations. Subsequently the

Energy Principle for ideal MHD instabilities is derived. The

specific instabilities which are then discussed are loosely di-

vided into two categories. Under the name “current driven

instabilities”, external and internal kink modes, which are

modes with a large radial extent, are discussed. The in-

ternal m = 1 kink mode is responsible for sawtooth col-

lapses and fishbone oscillations in tokamaks. Under the

header “pressure driven instabilities”, more localized modes

are presented. These modes may limit the pressure gradient

in the plasma without causing sizeable disruptions. The bal-

looning limit and the Mercier criterion are presented. The

Troyon limit is mentioned as a synthesis of several of these

stability boundaries.

I. GENERAL THEORY OF MHD INSTABILITIES

A. The stability problem

In magnetically confined plasmas, the optimization of the

plasma density and temperature for fusion energy produc-

tion has lead to a wide range of plasma instabilities. The

adaptation of current and pressure profiles to avoid one type

of instability can lead to yet another type of instability.

The fastest instabilities in magnetically confined plasmas are

usually MHD instabilities, and part of this lecture describes

how to avoid them.

The main question in MHD stability theory is to con-

sider an MHD equilibrium (measured or computed), and to

predict if it is stable or unstable. The obvious approach is

to simulate the evolution of the plasma numerically. The

simulation may show growing instabilities and their long-

term fate: saturation, triggering of other instabilities, or tur-

bulence. However, this essentially nonlinear modelling is

computationally expensive, especially when a wide range of

length or time scales are involved.

The present lecture focusses on linear instabilities in-

stead. This approach is systematic and decides if infinites-

imal perturbations of an equilibrium are stable (wave-like,

oscillating) or unstable (exponentially growing).

However, many other (usually slower) instabilities have

been discovered that depend on physics ingredients that are

not part of ideal MHD: electric resistivity, drift waves, and

energetic (not thermalized) particles [1]. Yet, these insta-

bilities often look very much like MHD instabilities if one

considers the plasma motion, electric currents, and magnetic

field perturbations. The second purpose of this lecture is

therefore, to learn about the structure of MHD instabilities.

In experiments, this helps to understand how a variety of in-

stabilities show up in diagnostic signals.

B. Ideal MHD

Starting point is the set of equations of resistive MHD:

∂ρ
∂t

= −∇·(ρU) ,

∂p
∂t

= −U ·∇p− γp∇·U , γ = 5/3 ,

ρ
(∂U
∂t

+U ·∇U
)

= j ×B −∇p ,

∂B
∂t

= −∇×E ,

E = ηj −U ×B ,

j = ∇×B .

In addition there is Gauss’ law ∇·B = 0 which, once sat-

isfied, is conserved by Faraday’s law. In hot plasmas, the

electric resistivity η is negligible for sufficiently fast plasma

processes. Taking η = 0 in Ohm’s law, we obtain the

ideal MHD model. Introducing the total time derivative

d/dt ≡ ∂/∂t + U · ∇, the ideal MHD equations can be

written as

ρ
dU
dt

= B ·∇B −∇
(

sργ + 1
2B

2
)

, (1)

dρ
dt

= −ρ∇·U , (2)

ds
dt

= 0 , s ≡
p
ργ

, (3)

dB
dt

= B ·∇U −B∇·U . (4)

where s is the entropy density of the plasma. The mo-

mentum balance equation (1) is central to the MHD physics:

it gives the evolution of the plasma flow U in terms of the

density ρ, the magnetic field B, and the entropy s (or pres-

sure p = sργ).

An important property of the MHD model is that the

other three equations (the mass continuity equation (2), the
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energy equation of state (3), and Faraday’s law (4)), give the

evolution of ρ, s (or p), and B due to the plasma flow as

local conservation laws.

This is most easily seen for the energy equation (3),

which merely states that the entropy density s is conserved

in each point as it moves along with the plasma velocity U .

For the other conservation laws, we first specify how an in-

finitesimal line element dx moves with the plasma flow U ,

d
dt
dx =

d
dt
(x+ dx)−

dx
dt

= U(x+ dx)−U(x)

= dx·∇U .

By constructing infinitesimal surface and volume elements

out of line elements, d2x = dx1 × dx2 and d3x = dx1 ×
dx2 ·dx3, we obtain

d
dt
d2x = −(d2x×∇)×U

= d2x∇·U − (∇U)·d2x , (5)

d
dt
d3x = d3x∇·U . (6)

Combining expression (6) with (2), one finds the mass con-

servation law in integral form,

d
dt

∫

ρ d3x = 0 , (7)

for any volume that moves with the plasma flow. In the same

way we can combine Eqs. (4) and (5) to give

d
dt

∫

B d2x = 0 . (8)

This equation states that the magnetic flux through an arbi-

trary surface that moves with the plasma is conserved.

To understand the consequences of this flux conserva-

tion law, consider the surface of a thin tube that surrounds

a stretch of magnetic field line. By construction, there is

zero magnetic flux crossing the surface. In addition, Gauss’

law states that the flux that enters one end of the tube equals

the flux that leaves the other end. Let this tube flow with

the plasma velocity as time proceeds. The flux conservation

law dictates that the flux that crosses the tube will remain

zero and that the flux through the tube will remain the same.

Hence, also at later times, the moving tube will precisely sur-

round a magnetic field line. We can therefore say that mag-

netic field lines move with the plasma flow in ideal MHD. It

follows that in an ideal MHD plasma, magnetic field lines

cannot be created or annihilates, nor can they break up and

reconnect. The magnetic topology is conserved, “frozen in

the fluid”, so to speak.

Strictly speaking, ideal MHD instabilities cannot

change the magnetic topology of nested toroidal surfaces in

a tokamak plasma. Thus, in a very hot (e.g. fusion-) plasma

with negligible resistivity, ideal MHD instabilities may not

seem to be dangerous to plasma confinement. However, as

we shall see later, MHD instabilities may involve “magnetic

resonant surfaces” in the plasma, where the plasma motion

induces a narrow layer with very high current density. In

such a layer, even very low resistivity may be sufficient to

cause magnetic reconnection. Although this reconnection of

field lines is confined to a thin layer, these field lines may

extend into regions where they are far apart. Therefore, lo-

calized reconnection may have global consequences for par-

ticle and energy confinement.

The topological constraints can prevent ideal MHD in-

stabilities altogether, even if there is plenty of (magnetic and

kinetic) free energy to drive instabilities, as is often the case

in magnetically confined (fusion-) plasmas. In such cases

there may be a much slower, resistive MHD-instability, for

which magnetic reconnection (again, taking place in a thin

resonant layer) is essential. One such instability is the tear-

ing mode, presented in another lecture [2].

Another important property of the ideal MHD system is

that it can be derived from Hamilton’s principle: the plasma

motion U(x, t) that makes the action

S =

∫ t1

t0

Ldt

stationary, where the Lagrangian is [3, 4]

L =

∫

d3x
(

1
2ρU

2 −
p

γ − 1
− 1

2B
2
)

, (9)

is the true dynamical motion that satisfies the MHD equa-

tions. Here, it is understood that the plasma motion deter-

mines the evolution of ρ, p, and B through Eqs. (2), (3),

and (4), respectively.

In order to demonstrate that Hamilton’s principle for

the Lagrangian (9) indeed produces the MHD momentum

equation (1), we investigate how the action S changes if

the MHD fields are perturbed. Since all MHD quantities

respond to the plasma motion, the primary perturbation is

an arbitrary infinitesimal displacement ξ(x, t) of the plasma

fluid. We introduce the operator δξX , the Lagrangian pertur-

bation of a variable X , which is the change in the quantity

while following the perturbed plasma motion. For instance,

δξx = ξ. It is helpful to introduce also the Eulerian pertur-

bation δEξ ≡ δξ − ξ ·∇, which gives the perturbation at a

fixed point in space, δEξ x = 0. It therefore commutates with

partial space and time derivatives,

δEξ ∇ = ∇δEξ , δEξ
∂
∂t

=
∂
∂t
δEξ .

While the Lagrangian perturbation does not commutate with

∇ and ∂/∂t, it commutates with the total derivative instead,

δξ
d
dt

=
d
dt
δξ , since δξU =

dξ
dt
.

An infinitesimal line element varies as δξdx = dx·∇ξ. With

these tools, one can obtain the perturbed density, pressure,

94



and magnetic field from Eqs. (7), (3), and (8) respectively,

δξρ = −ρ∇·ξ , (10)

δξp = −γp∇·ξ , (δξs = 0) (11)

δξB = B ·∇ξ −B∇·ξ . (12)

The perturbed volume element is given by δξ d
3x = d3x∇·ξ.

Now we can obtain the perturbed Lagrangian from Eq. (9),

δξL =

∫

d3x
[

(∇·ξ)
(

1
2ρU

2 −
p

γ − 1
− 1

2B
2
)

+ δξ
(

1
2ρU

2 −
p

γ − 1
− 1

2B
2
)

]

=

∫

d3x
[

ρU ·
dξ
dt

+ (p+ 1
2B

2)∇·ξ −B ·(B ·∇ξ)
]

=

∫

d2x·ξ(p+ 1
2B

2) +
d

dt

∫

d3x ρU ·ξ

−

∫

d3x ξ·
(

ρ
dU
dt

− j ×B +∇p
)

. (13)

In the last step we have used the mass conservation equa-

tion (2). The first term in (13) vanishes upon integration if

one considers only internal perturbations, i.e., ξ ·n = 0 on

the plasma boundary (also ρ = 0 and B ·n = 0 there).

Hamilton’s principle can be extended to free-boundary per-

turbations (with ξ ·n 6= 0) by adding to the Lagrangian the

vacuum magnetic energy that surrounds the plasma. The

second term in (13) does not contribute to the perturbed ac-

tion δξS =
∫

δξLdt if the perturbation is zero at t = t0
and t = t1. The term vanishes altogether if one considers

perturbations of a static equilibrium. The third term van-

ishes for arbitrary ξ if and only if the momentum balance

equation (1) is satisfied. In this way Eq. (1) follows from

Hamilton’s principle.

C. The linearized MHD equations

We now posess the tools to study MHD waves and instabil-

ities. Perturbing the momentum equation (1) gives us the

equation of motion for ξ,

0 = δξ
(

ρ
dU
dt

− j ×B +∇p
)

= ρ
d2ξ

dt2
− F (ξ) , (14)

where the linear force operator F is defined as

F (ξ) = δξ(j ×B −∇p) + ρ
dU
dt

∇·ξ

= (∇×Q)×B + (∇×B)×Q+

∇(ξ ·∇p+ γp∇·ξ) +∇·
(

ρξ
dU
dt

)

, (15)

and where

Q ≡ δEξ B = ∇× (ξ ×B) .

Since Eq. (14) is linear in ξ, it determines eigenfunctions

ξ(x, t) = ξ(x)e−iωt

The force operator F possesses the important property

that it is self-adjoint, i.e., given any two vector fields ξ and

ζ, the operator satisfies

∫

ζ ·F (ξ)d3x =

∫

ξ·F (ζ)d3x . (16)

Direct proofs of the self-adjointness of F can be found in

many texts [5, 3, 6, 7, 8, 9]. Most proofs require lengthy vec-

tor manipulations that seem to lack direction. We will there-

fore take a more instructive approach.

The key element of our proof is that the Lagrangian per-

turbations form a Lie algebra. Consider the commutator of

two perturbations, (δζδξ − δξδζ)x = δζξ − δξζ ≡ η. This

is equal to another perturbation of the position, η = δηx.

Since the perturbations of all MHD quantities derive from

the displacement vector, we have the general operator iden-

tity

δζδξ − δξδζ = δη, η ≡ δζξ − δξζ,

which defines the Lie algebra. Now consider the double vari-

ation of the Lagrangian (13) and use the boundary condi-

tions,

δζδξL = δζ

∫

d3x
[

∂
∂t

(ρU ·ξ)− ξ·
(

ρ
dU
dt

− j ×B +∇p
)

]

=

∫

d3x
[

∂
∂t

(

ρ
dζ
dt

·ξ
)

− ξ ·
(

ρ
d2ζ

dt2
− F (ζ)

)

]

= 2K(ζ, ξ)− 2δW (ζ, ξ) , (17)

where we have defined the kinetic and potential energy func-

tionals [5],

K(ζ, ξ) = 1
2

∫

ρ
dζ
dt

·
dξ
dt
d3x ,

δW (ζ, ξ) = − 1
2

∫

ζ ·F (ξ) d3x .

According to the Lie algebra, δζδξL− δξδζL = δηL. More-

over, δηL = 0 because the unperturbed plasma satisfies

the momentum equation (1). Therefore, δζδξL = δξδζL,

and since the kinetic energy functionalK is manifestly self-

adjoint, it follows that the potential energy functional δW is

symmetric,

δW (ζ, ξ) = δW (ξ, ζ).

This concludes the proof that the force operator (15) is self-

adjoint.

D. The Energy Principle

The self-adjointness (16) of the force operator has several

important consequences that are useful in the stability anal-

ysis of actual configurations. Here, we list four properties.
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1. For a normal mode ξ(x, t) = ξ(x)e−iωt, ω2 is always

real. It easy to see that ω∗2 = ω2 from

ω2

∫

ρξ∗ ·ξ d3x = −

∫

ξ∗ ·F (ξ) d3x

= −

∫

ξ·F (ξ∗) d3x = ω∗2

∫

ρξ∗ ·ξ d3x .

The first step uses the eigenvalue equation for the mode,

−ρω2ξ = F (ξ), the second step self-adjointness, and the

third step the complex conjugate of (14). Because of 1.

an eigenmode is either oscillating (ω real) or exponentially

growing (ω imaginary). Overstable modes (growing oscilla-

tions) cannot occur. Hence if a mode is stable it cannot be-

come unstable by a slight variation of the equilibrium which

would add a small imaginary component to a real frequency

ω. Instead, access to instability is only possible via marginal

stability (ω = 0), because ω2 has to change sign.

2. Eigenmodes with different eigenvalues are orthogonal,

∫

ρξ∗m ·ξnd
3x = 0 , if ω2

m 6= ω2
n .

3. The Energy Principle [5, 10] states that an equilibrium

is stable if and only if

δW (ξ∗, ξ) ≥ 0

for all possible displacements ξ, which satisfy appropriate

boundary conditions and are bounded in energy. We will

prove first the sufficiency and then the necessity of the sta-

bility condition.

Sufficiency of the Energy Principle follows simply from

conservation of the total energy H = K(t) + δW (t). If

δW > 0 then K(t) cannot grow beyond the initial total en-

ergy H , i.e., an exponentially growing instability is not pos-

sible. The necessity of the Energy Principle means that the

equilibrium is unstable whenever we can find a trial function

ξT (not necessarily an eigenmode) for which δW < 0. In

order to see this we consider the positive integral

I(t) ≡ 1
2

∫

ρ|ξ|2d3x .

We now calculate d2I/dt2. Using Eqs. (14) and (1) to re-

move d2ξ/dt2 terms we obtain

d2I
dt2

= 2K − 2δW .

Now take as initial condition ∂ξT /∂t = 0, so that initially

the kinetic energyK is zero. Therefore the (conserved) total

energyH = K+δW is negative. Since at later timesK ≥ 0
we find

d2I
dt2

= 4K − 2H > −2H > 0 ,

which proves that I grows at least as fast as t2 as t → ∞.

This proves the Energy Principle [11, 7].

An advantage of the Energy Principle is that one can con-

sider the sign of δW for a class of cleverly chosen trial func-

tions ξT , which are however not eigenfunctions. (The eigen-

functions might be difficult to calculate). For such a limited

class of trial functions the condition δW > 0 is necessary

for stability, but not sufficient. One obtains a stability bound-

ary beyond which the equilibrium is definitely unstable. On

the “stable” side of such aboundary, however, there might

still be unstable modes that have been “overlooked” because

they are not in the set of trial functions. An example of such

a necessary but insufficient criterion is the Mercier criterion

which we will encounter in section III..

4. In order to find the precise stability limits one has to

minimize δW for all allowed perturbations ξ. This can be

done in a standard way by variational calculus. The result-

ing Euler equation is precisely equation (14) at marginal sta-

bility,

F (ξ) = 0 . (18)

In other words, finding stability boundaries by minimizing

δW and finding normal modes by solving Eq. (14) are equiv-

alent. This fact will appear several times in the following

sections.

E. The intuitive form of the energy functional

In this section and in the following one we consider the ac-

tual stability boundaries for tokamak configurations. Such

stability limits are found by considering at marginal stabil-

ity (ω = 0) specific classes of modes that are expected to

be the most unstable ones. Most of the following analysis

will be done not on the basis of the marginal stability equa-

tion (18) but with the energy principle. Freidberg [6, 7] will

be followed here in discussing the intuitive form of the en-

ergy functional,

δW = 1
2

∫

P

d3x
[

γp|∇·ξ|2 + |Q⊥|
2 +B2|∇·ξ⊥ + 2ξ⊥ ·κ|

2

− j‖(ξ
∗ × b·Q⊥)

− 2(ξ
⊥
·∇p)(ξ∗

⊥
·κ)

]

, (19)

which can be obtained from expression (17) by puttingK =
0 and by performing several integrations by parts. Here, b =
B/B is the unit vector parallel to the magnetic field. Its

derivative along the field line κ = b ·∇b is the field line

curvature. Note that κ ⊥ b. For the adjoint perturbation we

have taken the complex conjugate, ξA = ξ∗. The Eulerian

perturbation of the magnetic field Q is given after Eq. (15).

The first three terms in the integrand of (19) are always

positive and stabilizing. The last two terms are potentially

destabilizing.

The first stabilizing term represents plasma compres-

sion. It is an important stabilizing force in sound waves. At

marginal stability, however, the kinetic energy being zero, it

is the only term in which ξ‖ appears. All other terms depend

on ξ⊥ only. One can minimize δW once and for all with
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respect to ξ‖. In a tokamak configuration ξ‖ can actually be

chosen to make 1
2

∫

d3x γp|∇·ξ|2 = 0, by making ∇·ξ = 0
in the entire plasma with the possible exception of some iso-

lated surfaces. It is a fortunate situation that we can consider

the plasma as being incompressible because the ideal gas

equation of state (3) has a rather limited range of validity in

tokamaks in the low collisionality regime, especially in the

presence of non-thermal particles due to non-Ohmic heating

or fusion reactions. The second term is caused by the per-

turbed magnetic field component perpendicular to the equi-

librium field. It is the energy required to bend magnetic field

lines. It is the dominant stabilizing term in shear Alfvén

waves. The third term involves the parallel component of

the perturbed magnetic field and therefore the perturbation

of the magnetic field strength B. Since B can be viewed as

the density of field lines, this term is caused by the compres-

sion of field lines, countered by the magnetic pressure. This

term dominates compressional Alfvén waves.

The fourth term can be destabilizing. Because it is pro-

portional to j‖, modes driven unstable by it are called cur-

rent driven instabilities. The fifth term is also a potential

source of instabilities, called pressure driven modes because

the term is proportional to the pressure gradient. We will

consider both classes of instabilities in more detail.

II. CURRENT DRIVEN INSTABILITIES

A. Introduction

In this section we will consider instabilities which are driven

by the energy stored in the current parallel to the magnetic

field, i.e., by the fourth term in the energy functional (19).

The driving force is due to the tendency of two conducting

wires (read: flux tubes) with parallel currents to repel each

other. The destabilizing effect remains even if the plasma

pressure is small. This justifies the distinction between cur-

rent driven modes and pressure and driven instabilities such

as the ballooning modes.

We shall see that the current-driven modes tend to have

very small parallel wave numbers, b·∇ ≪ ∇, so that these

modes must have almost the same helical structure as the

magnetic field lines. In a large aspect ratio tokamak plasma

(a≪ R) with circular poloidal cross-section, the plasma lo-

cally has the approximate symmetry of a cylinder, and eigen-

modes of the system can be approximated by a single poloi-

dal harmonic [12, 13]. Modes dominated by such a helical

displacement ei(mθ−nφ) are called kink modes.

The next subsection gives a general approach to internal

MHD instabilities with low poloidal and toroidal mode num-

bers (m, n), i.e., with a wavelength comparable to the ma-

chine minor radius. Associated with the large spatial extent

of the linear mode is usually also a large nonlinear amplitude

of the instability. Therefore such instabilities can lead to a

disruptive loss of confinement in a significant fraction of the

plasma.

Most current-driven modes are stable in ideal MHD (i.e.

without resisitivity), except free boundary modes, which are

instabilities with a finite amplitude on the plasma surface

and in the vacuum region. The vicinity of a conducting wall

can be important in stabilizing these modes. They are dis-

cussed in the next subsection.

The final subsection discusses m = 1, n = 1 kink

modes. These modes require a special treatment because

they can also lead to internal instabilities, if a flux surface

with q = 1 is present in the plasma. The internal kink mode

is one of the mechanisms that in tiokamaks drive internal dis-

ruptions or sawtooth collapses, so called because they occur

in the hot plasma core repetatively, typically removing all the

excess pressure from the center, leaving profiles with a flat or

even hollow central part. The spatial extent of these modes

is mainly determined by the plasma volume where the safety

factor q < 1. This volume usually contains a considerable

fraction of the plasma kinetic energy. Sawtooth collapses

often show fast initial growth of the perturbation. In the lan-

guage of linear stability, a large growth rate means that the

plasma is far in the unstable region in configuration space.

Therefore, the mode is not triggered when the slowly evolv-

ing equilibrium crosses the stability boundary. Rather, some

essentially nonlinear trigger mechanism has to take place,

which is at present not understood. Hence, we have to keep

in mind that linear stability theory does not give a descrip-

tion of the temporal behaviour of a disruptive instability. It

can, however, give a good indication whether an instability

can indeed occur, and in addition it can provide the spatial

structure and growth rate of the mode at low amplitudes.

B. Kink modes

The most important features of current driven instabilities

can be studied in the low-β approximation, in which

j⊥ =
B ×∇p

B2 = O(ε2) , ε =
a
R0

≪ 1 .

An immediate consequence of β = O(ε2) is that the Shafra-

nov shift of the flux surfaces is small, ∆ = O(ε2a). There-

fore, if shaping effects such as elongation and triangular-

ity are small, the flux surfaces have approximately centered

circular cross sections [14]. In addition, since ε is small,

the field line curvature is small and B (∼ 1/R) does not

vary much over the plasma cross section. Therefore, we can

approximate the plasma by a cylindrical column of radius

r = a and length 2πR0. Our cylindrical coordinates will

be (r, θ, φ), where θ is the poloidal angle and φ the longi-

tudinal coordinate. Of course we impose periodic boundary

conditions for φ→ φ+2π. We will write vectors in column

notation when they are given in terms of the orthonormal ba-

sis r̂, θ̂, φ̂. The magnetic field and the current density are

B = B







0
r
qR0

1






+O(ε2), j =

B
R









0

0

1
r

(r2

q

)′









+O(ε2).
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We will now look for the perturbations ξ that minimize

δW (19). We do this in four steps.

1. Due to the symmetry in both θ and φ we can consider

single poloidal and toroidal harmonics, with mode numbers

(m,n) as normal modes,

ξ = ξ(r)ei(mθ−nφ−ωt) .

2. We write the vector ξ as

ξ = ξrr̂ + ξθθ̂ + ξ‖b .

The component ξ‖ occurs in δW only in the plasma com-

pression term
∫

γp|∇·ξ|2d3x, which can be minimized to

zero by choosing ξ‖ such that ∇·ξ = 0 in most of the vol-

ume. The remaining energy functional depends on ξr and ξθ
only.

3. As a consequence of the low-β ordering, the stabiliz-

ing magnetic energy terms in δW are by far the largest:

all other terms are O(ε2) smaller. Hence, minimization of

δW requires to leading order that 1
2

∫

|Q|2d3x is minimized.

We will see that this minimization poses only one condition

on the two functions ξr(r) and ξθ(r). After this first mini-

mization we will consider the remaining terms in the energy,

which are O(ε2), and derive a stability criterion from them.

The (Eulerian) perturbation of the magnetic field is

Q = ∇× (ξ ×B) =
B0

r









−i
(m
q

− n
) r
R0

ξr
r
R0

[(r
q
ξr
)′
+ inξθ

]

−(rξr)
′ − imξθ









,

One sees that the φ̂ component is dominant. The r̂ and θ̂

components are O(ε) smaller and give O(ε2) smaller con-

tributions to the energy. Hence, we arrive at the condition

that the φ̂ component must be small, at most O(ε). At this

point, we must be somewhat more careful. Our derivation so

far is fine if we consider an unstable equilibrium and merely

look for a trial function ξT that makes δW (ξT ) < 0 in order

to prove this. However, in order to obtain the actual stability

criterion one needs to extend the expansion to higher order,

O(ε2), in the energy. Moreover, we want to find the actual

eigenfunction ξ. We want to know the spatial structure of

the mode. In principle, we have to solve the original Euler

equation F (ξ) = 0, all three components of it, in the three

unknown components of ξ. Here, another nice property of

the energy principle comes to the rescue. After all, we al-

ready have arrived at a one-dimensional system with only

two unknowns,

δW (ξr , ξθ) = 2π2B2
0

∫

R0

r

∣

∣(rξr)
′ + imξθ

∣

∣

2
dr +O(ε2) .

The usefulness of the energy approach is that we can readily

extract Euler equations for ξr and ξθ from this expression,

r
d
dr

[

1
r

(

(rξr)
′ + imξθ

)

]

= O(ε2)

−
im
r

(

(rξr)
′ + imξθ

)

= O(ε2) . (20)

To leading order, the two equations are not independent, and

we will have to go to higher order in ε to find an independent

second equation. We discuss Eq. (20) for the cases m =
0 and m 6= 0 separately. For m = 0 we have (rξr)

′ =
0. The only solution that is regular in r = 0 is ξr = 0.

This implies that ξ is always tangent to the flux surfaces and

energy cannot be released: the m = 0 modes are stable. For

m 6= 0 we obtain

ξθ =
i
m
(rξr)

′ +O(ε2) . (21)

Note that this equation does not merely reduce the domi-

nant term, shown in Eq. (20), to the order of the other terms,

O(ε2). The term becomes much smaller than the rest of

δW , O(ε4). This is a general feature which occurs if one

expands a bilinear energy functional in a small parameter.

Another general pattern is that the orders of the energy terms

are always even powers of the small parameters. It is also

useful to note that the term that we have minimized is ap-

proximately the field line compression energy. Accordingly,

Eq. (21) states that the plasma motion in the poloidal plane

is to a good approximation incompressible, Div(ξr, ξθ) = 0.

4. Using Eq. (21) we eliminate ξθ from δW (ξr, ξθ). This

requires some integrations by parts and cancellation of q′-
terms. The result is

δWcyl = π2B
2
0

R0

∫ a

0

(

|rξ′r |
2 + (m2 − 1)|ξr|

2
)( n
m

−
1
q

)2
r dr

+O(ε4) , (22)

Since m 6= 0, the dominant terms in expression (22) are

clearly positive definite and therefore do not give rise to in-

stabilities. We will now discuss two ways in which unstable

modes can arise that are described by Eq. (22). The first pos-

sibility involves the boundary conditions. If the mode has a

non-zero amplitude at the plasma boundary, ξr(a) 6= 0, then

extra terms should be added to δWcyl corresponding to the

energy of the vacuum region and of the plasma boundary it-

self. The additional terms can be negative and can give rise

to external kink modes. These instabilities will be briefly

discussed in the next subsection. The other possibility of in-

stability is when δWcyl vanishes to leading order, which is

only possible if m = 1. Then the O(ε4) terms become im-

portant, and these terms can be negative. This leads to the

potentially unstable internal m = 1 kink mode, which will

be treated in the final subsection.

C. External kink modes

The computation of external kink modes can be performed

using an extended energy principle, which takes into account

the energy in the plasma, in the vacuum region, and in gen-

eral a contribution from the plasma-vacuum boundary sur-

face. The boundary conditions between plasma and vacuum,

and between vacuum and (conducting) wall, play a central

role in the derivation of the extended energy functional. The
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first two of these conditions are that at both boundaries the

magnetic field is tangent to the boundary surface. The third

condition is that at the plasma-vacuum interface the momen-

tum balance requires that the quantity p + 1
2B

2 is continu-

ous. We will give here the resulting energy functional for

the case of a circular plasma cross section with minor ra-

dius r = a and a perfectly conducting wall at r = b, which

can be obtained following the steps outlined in the previous

subsection [15].

δWexternal = (23)

π2B
2
0

R0

{

∫ a

0

(

|rξ′r |
2 + (m2 − 1)|ξr|

2
)(

n
m

−
1
q

)2

r dr +

[

2
q

( n
m

−
1
q

)

+ (1 +mλ)
( n
m

−
1
q

)2
]

r2|ξr |
2

∣

∣

∣

∣

r=a

}

,

where

λ =
1 + (a/b)2m

1− (a/b)2m
.

The contribution of λ > 0 is the stabilizing effect of the

wall. The first term in the second line of Eq. (C.) is desta-

bilizing if q(a) < m/n. All other terms are positive. For

fixed m/n, the mode with the lowest poloidal mode num-

bers has the lowest field line bending energy and is therefore

the least stable one. Potentially the most unstable external

kink modes are the m = 2, n = 1 mode and in particular

the m = 1, n = 1 mode. They are also the most danger-

ous modes since they affect a large part of the plasma and

can cause a violent disruption that terminates the discharge

and can damage tokamak components. These modes require

q(a) < 2 and q(a) < 1, respectively. As soon as q(a) drops

below 2, the m = 2 mode becomes unstable unless the cur-

rent profile is extremely peaked or a conducting shell is close

to the plasma. As a consequence, present day tokamaks nor-

mally need to operate with q(a) > 2 in order to avoid the

m = 2 kink mode [16]. Note that the external m = 1 kink

mode remains out of reach by a safe margin.

Whether a mode is actually unstable depends on the de-

tails of the current profile. In order to obtain a stability cri-

terion the integral over the plasma interior in (C.) must be

minimized. The minimizing function ξr(r) is a solution of

the Euler equation obtained from (C.),

d
dr

[

( n
m

−
1
q

)2
r3
dξr
dr

]

= (m2 − 1)
( n
m

−
1
q

)2
rξr . (24)

Note that for n = 0 this equation is identical to the ra-

dial equations for small equilibrium shaping effects, equa-

tion (18) in Ref. [14]. Equation (24) is singular in r = 0
and in q = m/n. In the vicinity of the magnetic axis q(r)
is approximately constant. Hence, for small r we can find

exact solutions to Eq. (24), ξr(r) ∼ r−1±m. The solution

that is regular at r = 0 is

ξr ∼ rm−1 , ξθ = iξr . (25)

One sees that for m = 1 the components ξr and ξθ are

constant in the plasma centre, which corresponds to a rigid

displacement of the plasma core. For m > 1, however,

the mode amplitude vanishes in the plasma centre. Equa-

tion (24), together with (21), gives a good indication of how

a global MHD eigenfunction with specific toroidal and po-

loidal mode numbers looks like in an approximately circular

plasma cross section, even if one has to take into account ad-

ditional effects before the stability criterion for such a mode

can be found. An example of this is presented in the next

subsection.

D. The internal m=1 kink mode

We will show in this subsection that for m = 1 one can

also find an unstable mode with ξr(a) = 0, i.e., an internal

mode. It is clear from the energy functional (22) that the case

m = 1 requires a special treatment. A general calculation

shows that the m = n = 1 mode is in general more unstable

than the m = 1 modes with higher toroidal mode numbers.

For simplicity, we will restrict ourselves to the toroidal mode

number n = 1 from the start. The leading order energy

functional reduces to

δWm=1 = π2B
2
0

R0

∫ a

0

r3|ξ′r|
2
(

1−
1
q

)2
dr . (26)

Equation (25) implies that this functional is minimized by

ξr(r) = constant. However, we are looking for an internal

mode, ξr(a) = 0. Consider therefore a trial function which

is constant in the plasma centre, shows a steep step at the

radius r = r1 where q = 1, and vanishes for r > r1 [17].

Let us call the width of the layer where ξr(r) changes from

its central value to zero δ. We will show now that δWm=1

vanishes for δ → 0. The radial derivative of ξr is of course

large, |ξ′r|
2 = O(1/δ2). On the other hand, q ≈ 1 in this

layer, so that (1 − 1/q)2 = O(δ2). Therefore, small and

large factors cancel in the integrand of (26). It follows that

δWm=1 vanishes because the integration interval itself has

width δ.

The resulting eigenfunction ξ(x) represents a rigid dis-

placement of the plasma inside the q = 1 surface. It can

be understood that the stabilizing magnetic energy terms in

δW practically vanish by considering the three-dimensional

structure of the mode ξ(x) = ξ exp i(θ − φ). In the φ = 0
plane, the rigid displacement is pointed toward the low field

side. At φ = π
2 it is directed upward, at φ = π the motion is

to the high field side, and at φ = 3π
2 it is downward. Summa-

rizing, the motion of the plasma ring with q < 1 consists of a

rigid shift in the horizontal φ = 0 direction combined with a

tilt with respect to the axis in that direction. In contrast with

higherm,n modes, which cause a helical kink deformation,

the m = n = 1 mode does not deform the flux surfaces,

and therefore the field line compression and bending terms

in δW vanish.

The q ≈ 1 layer, where ξ′r is large, requires a more

careful discussion, however. Note that the poloidal displace-
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ment, given by Eq. (21), becomes very large for δ → 0. This

can be visualized as follows. The rigid displacement of the

plasma inside the q = 1 surface pushes it against this surface

and the outer plasma, which remains motionless. Since field

lines cannot cross each other, and because of incompress-

ibility, the plasma has to flow back at high speed in the thin

q ≈ 1 layer, thus creating extreme convection cells. The

plasma motion in the singular layer does not require mag-

netic energy because the field lines with q = 1 are closed

and have exactly the same helicity as the mode. Hence they

can be interchanged freely.

Summarizing, we have minimized the energy functional

to the point that δW = O(ε4). First, we have chosen ξ‖ such

that there is no plasma compression. Then we have chosen

ξθ such that there is no field line compression, and finally we

have taken m = n = 1 and we have taken a step-function

for ξr so that there is no field line bending. We have found

the general shape of the displacement function, but not yet a

stability criterion. In order to find the marginal stability cri-

terion we have to solve the O(ε4) equation δW (ξ∗, ξ) = 0.

This requires that the eigenfunction ξ is computed to higher

order in ε than we have done above. In O(ε4), the energy

functional contains the following new terms.

1. Terms due to ∇p and j⊥, which are O(β ∼ ε2) smaller

than the terms previously considered, enter the cylindrical

model. Hence, the internal kink mode is not a purely current

driven mode. In practice, the instability is mainly driven

by large pressure gradients in the central plasma (within the

q = 1 surface), while the current is somewhat stabilizing if

it is peaked in the centre.

2. The toroidal curvature of the plasma has to be taken into

account. This leads to corrections to the cylindrical approx-

imation. An example of such a correction is the Shafranov-

shift, which is of the order ∆(r) = O(εr) in the low-β or-

dering. This shift contains “toroidal” terms due to the pres-

sure and the current.

3. Another consequence of the toroidal shape is that eigen-

modes are not exact poloidal harmonics. In the case of the

internal m = 1 kink instability, the mode is dominantly the

m = 1 harmonic, as discussed in the cylindrical approx-

imation. In addition, however, there are small sidebands.

They have poloidal mode numbers m = 0 and m = 2, and

are O(ε) smaller than the m = 1 harmonic of the insta-

bility. These two sideband harmonics as well avoid plasma

compression and field line compression. In suitable coordi-

nates they obey the cylindrical equation (24) with m = 0
and m = 2, respectively. They cannot avoid field line bend-

ing however (which only the m = 1 step-function can do).

Hence these small harmonics contribute to O(ε4) to the en-

ergy, i.e., they are just as important for the stability criterion

as the main m = 1 harmonic.

4. In subsection A. we concluded that the field compres-

sion energy was minimized to O(ε4). Therefore we must

presently take into account that the magnetic field is not en-

tirely incompressible.

The derivation of the final stability criterion requires a

lot of algebra and yields a rather complicated equation. The

current profile enters in a non-trivial way, for instance, be-

cause the general solution of Eq. (24) for the m = 2 har-

monic is not a closed form. The pressure plays a more

straightforward role. The final form of δW is a quadratic

function of

βp(r1) ≡ −2
R2

0q
2

B2
0r

4
1

∫ r1

0

p′r2dr .

This quantity represents the total available kinetic energy

within r = r1. A simple form for δW can be obtained if

we consider a parabolic current profile jφ(r), and if we as-

sume that q(r) in the centre does not differ very much from

unity,

|1− q(0)| ≪ 1 , q(0) < 1 .

Then, the m = 1 internal kink mode is mainly pressure

driven and the potential energy is approximately [18]

δW ≈ 6π2B
2
0r

4
1

R3
0

|ξr(0)|
2
[

1− q(0)
][

β2
crit − β2

p(r1)
]

, (27)

where β2
crit =

13
144 . One sees that instability, δW < 0, occurs

if the driving force βp exceeds the threshold value βcrit ≈
0.3.

Equation (27) qualitatively matches the observations of

sawtooth oscillations in tokamaks. Sawteeth generally occur

when the central plasma temperature rises due to auxiliary

plasma heating. When the central temperature reaches a cer-

tain level, the plasma core becomes unstable and quickly,

typically within 100µs in the hottest tokamak plasmas,

looses all its excess energy. The temperature profile after the

crash is usually completely flat in the central plasma, or even

hollow. It has been observed that the instability initially is a

fast m = 1, n = 1 displacement of the hot plasma core, and

that the part of the plasma where this motion takes place and

where eventually the temperature is reduced indeed matches

the q < 1 region.

The application of the internal m = 1 kink model to

sawtooth collapses has many limitations, though. Firstly, we

have seen that the motion at the q = 1 surface is highly

singular. The motion minimizes δW , but in the case of an

unstable mode the fast motion near r = r1 corresponds to a

large kinetic energy, and hence the actual growth rate of the

mode is limited. However, other processes can take place.

The singular behaviour was due to the fact that flux surfaces

with q < 1 were pushed against flux surfaces with q > 1.

In ideal MHD this process cannot proceed, and the ideal

m = 1 mode is expected to saturate nonlinearly at a very

small amplitude. It is here that resistivity, however small in

a hot plasma, becomes important [19]. In the singular layer

it can cause pairs of approaching flux surfaces with q < 1
and q > 1 to coalesce and to form a topologically distinct

magnetic island [20]. In the process the different tempera-

tures of the two merging surfaces are of course averaged. In
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Kadomtsev’s model of the sawtooth relaxation [21], the re-

connection process proceeds until the entire plasma core is

replaced by the island and and as a result q = 1 in the en-

tire central region. Also the resulting temperature and den-

sity profiles are practically flat in this region. However, this

model does not match all observations of sawteeth. For in-

stance, sawtooth crash times much shorter than the predic-

tion of the Kadomtsev model have been observed. In addi-

tion, measurements of the central q-profile have been made

which indicate that sawteeth can occur with q(0) < 0.8
throughout the sawtooth cycle [22]. Ref. [28] gives a review

of m = 1 mode theory.

III. PRESSURE DRIVEN INSTABILITIES

A. Introduction

In this section modes are considered that are mainly driven

by the pressure gradient, i.e., modes for which the fifth term

in the intuitive from of the energy functional (19) is the dom-

inant destabilizing contribution. One sees that this term can

be destabilizing when ξ ·∇p and ξ ·κ have the same sign,

and this effect is strongest when the vectors ∇p and κ are in

the same direction (unfavourable curvature). To clarify this

situation for tokamak equilibria, we rewrite the momentum

balance equation ∇p = j ×B as

∇p = B2κ− 1
2∇⊥B

2 , (∇⊥ = ∇− bb·∇)

Suppose for a start that the plasma pressure is balanced by

the magnetic pressure, the second term on the right. How-

ever, due to the toroidal geometry B has an overall 1/R de-

pendence. Therefore, ∇1
2B

2 is necessarily directed outward

at the low field side of the torus, i.e., magnetic pressure can-

not prevent a plasma column from expanding in the ∇R di-

rection. Hence, at the low field side the magnetic curvature

term (the pull of the field lines) must balance the pressure

gradient. It is clear from Eq. (19) that this results in a region

of bad curvature (κ·∇p > 0).
In such a region a flux tube is pulled inward by its own

tension and pushed outward by the pressure gradient. Thus,

if a flux tube of higher pressure could interchange position

with a flux tube of lower pressure, their changes of the mag-

netic energy would cancel while pressure energy would be

released. If the motions of the flux tubes in a bad curva-

ture region were not constrained in other ways, instabilities

could occur on an arbitrarily small scale. The process would

be analogous to the Rayleigh-Taylor instability.

Two effects prevent this process from happening uni-

versally. Firstly, field lines in a tokamak pass regions of

favourable curvature (where the magnetic pressure confines

the plasma) as well as bad curvature regions. Indeed, the

bad curvature region in a tokamak plasma can be minimized

by a suitable combination of outward pointing triangularity

and vertical elongation. Secondly, in the presence of mag-

netic shear, field lines on neighbouring flux surfaces are not

perfectly aligned so that interchange of field lines requires

some magnetic energy.

B. Ballooning stability

The pressure-driven modes that are generally the most unsta-

ble (and which give rise to the most stringent stability lim-

its) are the so-called ballooning modes. These modes owe

their name to their tendency to have a larger amplitude in

parts of the plasma where the destabilization originates, in a

tokamak usually the low field side. Such a spatial variation

of the amplitude needs to be of a very particular nature in

order to avoid the strong stabilizing effect of the magnetic

field. In contrast, kink modes avoid this stabilizing effect by

having an almost constant amplitude on a flux surface. An-

other contrast is that for ballooning modes, higher toroidal

mode numbers n are more unstable. Ballooning modes have

a rather complicated spatial structure because their stability

depends on geometric details of the plasma, especially the

curvature of the field lines. We shall avoid this complex-

ity by focussing on the stability limit (usually a limit on the

pressure gradient). Exactly at the stability boundary, which

is found in the limit n → ∞. The corresponding modes are

highly localized in radius, so that we obtain stability criteria

for each flux surface separately.

We shall find the marginally stable modes by mimimiz-

ing δW (ξ), which is equivalent to solving Eq. (18). In terms

of the minimized value of the energy functional, the crite-

rion for instability is then δWmin < 0. Our approach will

be to consider only a specific class of instabilities, with high

poloidal and toroidal mode numbers m and n. As we will

see, such modes tend to be rather localized in r. We are

in effect considering the situation where a gradually evolv-

ing (intensively heated) plasma equilibrium, when it reaches

stability limits, initially does so in a small volume. Ther-

fore, we expect the first instability to occur to be a localized

one. Though this is the most straightforward situation, we

will see in the next section that some of the most common

instabilities affect a rather large plasma volume, what makes

them more dangerous for confinement.

Here, we will consider instabilities in the limit n →
∞. Connor, Hastie, and Taylor [23] have treated this limit,

neglecting O(1/n2) but retaining O(1/n) terms. They have

shown that the O(1/n) terms are always stabilizing. In this

sense, the most unstable modes are the ones with n = ∞.

Therefore, in this section we will take the limit n → ∞
and neglect the O(1/n) terms right away. The minimization

of δW proceeds in five steps [7], bringing us from the three-

dimensional vector equation F (ξ) = 0 to a one-dimensional

equation for one scalar function.

1. The plasma compression term in (19) vanishes by min-

imization with respect to ξ‖, which is chosen in such a way

that ∇·ξ = 0 almost everywhere in the plasma.

2. One cannot take the limit n → ∞ straight away. If one

considers high mode numbersm and n, one quickly sees that

the stabilizing contribution |B·∇ξ⊥|
2 to the field line bend-
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ing energy 1
2

∫

d3x|Q⊥|
2 is proportional to (n−m/q)2 and

is therefore much larger than the destabilizing terms in (19).

Hence, the most unstable modes will tend to be aligned to

the field lines,m ≈ nq. In more general words, ξ⊥ will vary

strongly only perpendicular to the field lines (k⊥ ≫ 1/a)

while varying slowly, on the scale of the machine size, along

the field lines (k‖ ∼ 1/a). We implement this ordering by

means of an eikonal representation for ξ⊥ [23, 24],

ξ
⊥
(ψ, θ, φ) = ξ

⊥
(ψ, θ)einS , B ·∇S(ψ, θ, φ) = 0 .

Since n is large, einS is a rapidly varying function, while

ξ⊥(ψ, θ) varies slowly.

|n∇S| ≫
1
a
, |∇ξ

⊥
| ∼

|ξ⊥|

a
.

This formalism serves its purpose. The large quantity ∇S
does not enter the field line bending energy as one can see

by working out Q in terms of ξeinS ,

Q⊥ = einS
[

∇× (ξ⊥ ×B)
]

⊥
.

The energy functional becomes

δW = 1
2

∫

d3x
[

∣

∣Q
⊥
|2 +B2|in∇S ·ξ

⊥
+∇·ξ

⊥
+ 2κ·ξ

⊥

∣

∣

2

− 2(ξ
⊥
·∇p)(ξ∗

⊥
·κ)

− j‖ ξ
∗

⊥ × b·Q⊥e
−inS

]

(28)

3. At this stage the mode number n still appears in the field

compression (second term) and leads to the large stabilizing

energy contribution 1
2n

2
∫

d3xB2|∇S·ξ
⊥
|2. In order to keep

this term finite, the perturbation ξ
⊥

must have the general

form

ξ⊥ = ξ⊥0 +
ξ⊥1

n
, ξ⊥0 ≡

X
B
b×∇S (29)

where X(ψ, θ) is a new scalar function independent of ξ⊥1.

One may verify that with ξ⊥ of the form (29), the term of

concern in Eq. (28) is indeed finite,

in∇S ·ξ⊥ = i∇S ·ξ⊥1 .

4. Now we can take the limit n→ ∞. In this limit

Q
⊥
= ∇×

[

(Xb×∇S)× b
]

⊥

= ∇× (X∇S)⊥

= ∇× (X∇S)− bb·∇ × (X∇S)

= (b·∇X) b×∇S .

The j‖-term vanishes because

(ξ∗⊥0 × b)·Q⊥ =
X∗

B
∇S ·(b·∇X)b×∇S = 0 .

Thus the energy becomes

δW = 1
2

∫

d3x
[

|∇S|2|b·∇X |2

+B2|iξ⊥1 ·∇S +∇·ξ⊥0 + 2κ·ξ⊥0|
2

− 2(B ×∇S ·∇p)(B ×∇S ·κ)|X |2
]

.

The variable ξ⊥1 appears only in the second term. There-

fore, the energy can be minimized with respect to ξ⊥1 sim-

ply by choosing iξ⊥1 · ∇S = −∇ · ξ⊥0 − 2κ · ξ⊥0, thus

eliminating the field compression term altogether.

5. The remaining functional contains only one variable X
and its derivative along the field lines, b ·∇X . It is essen-

tially one-dimensional since it does not contain the radial

derivative of X . We can therefore consider a potential en-

ergy functional on each flux surface separately

δW =

∫

dθ J
[

|∇S|2|b·∇X |2 −

2(B ×∇S ·∇p)(B ×∇S ·κ)|X |2
]

.(30)

where the Jacobian is J(ψ, θ, φ) = (dℓ/dθ)/Bp. The

derivative in the magnetic field direction can be rewritten

as b·∇X = (∂X/∂θ)/JB. Hence the Euler equation forX ,

associated with the functional (30) is given by

1
J
∂
∂θ

( |∇S|2

JB2
∂X
∂θ

)

+2(B×∇S·∇p)(B×∇S·κ)X = 0 .

(31)

It is a linear second order differential equation in the po-

loidal coordinate θ. Note that the combination J−1∂/∂θ is

independent of the definition of the poloidal coordinate.

How have we lost the radial dimension of our stability

problem? It is not a straightforward matter of invariance, as

is the case with the φ coordinate. The modes we consider

have b·∇ = k‖ ≪ |k⊥|, which is a non-trivial situation in a

tokamak because of the presence of magnetic shear: q varies

with the radius. The answer is that we have hidden these

difficulties in our assumption that we can find an eikonal

function that satisfies B ·∇S = 0. In the orthogonal flux

coordinates this condition can be written as

F
R2

∂S
∂φ

+
1
J
∂S
∂θ

= 0 . (32)

We now consider a single toroidal harmonic, S(ψ, θ, φ) =
−φ + S(ψ, θ), and obtain solutions by integrating Eq. (C.)

with respect to θ,

S = −φ+ F

∫ θ

θ0

J
R2 dθ . (33)

The integration boundary θ0 is a free parameter in our so-

lution. The energy functional should be minimized with

respect to θ0 as well in order to find the most unstable

mode. For up-down symmetric equilibria the minimizing
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value often is θ0 = 0. We recognize in (33) an incom-

plete version of the integral that yields the safety factor,

q(ψ) = (F/2π)
∮

dθ J/R2. It is clear now that the func-

tion S satisfies

S(ψ, θ + 2π, φ) = S(ψ, θ, φ) + 2πq .

Let us consider the value of S on two neighbouring field

lines with a small spatial separation. In the presence of mag-

netic shear these lines will differ slightly, by ∆q. Then, since

n is large, the values of einS on these field lines will diverge

strongly from each other, at the rate n∆q, when θ increases.

Therefore einS depends so strongly on the radial coordinate

that almost all radial dependence of the vector ξ is contained

in the factor einS .

It seems that we have treated complicated behaviour as a

function of the radius in a compact way. There are, however,

two problems with this approach. The most obvious problem

is that the radial dependence of einS is strongly oscillatory

and does not give rise to a radially localized eigenfunction

ξ, although Eq. (31) applies to any individual flux surface.

The second problem arises because for irrational values of

q, the function einS is not periodic in θ, and neither is ∇S.

Hence, the constraint (32) is incompatible with periodicity.

Even if a periodic solutionX(θ) can be found, the associated

displacement vector ξ(ψ, θ, φ) is not periodic in θ and hence

not acceptable as a physical perturbation of the equilibrium.

We will see that the two problems are related and that the

solution of the second problem takes care of the first one as

well.

A practical solution of these difficulties has been given

by Connor, Hastie, and Taylor [24]. The basic idea is to

give up the periodicity in θ in the energy functional (30),

and allow the generalized angle θ run over the entire real

axis (−∞,∞). Also the Euler equation (31) should be con-

sidered as a differential equation over the real axis, with its

boundary conditions in θ = ±∞. With this Ansatz, we make

four observations.

1. The linear second order equation (31) has in general two

independent solutions, one of which vanishes for θ → −∞,

the other for θ → ∞. Marginal stability corresponds to

special values of the equilibrium quantities for which the

equation has a solution that vanishes for θ → ±∞ simul-

taneously. This we require since the eigenmode must have

a finite energy content. Of course, away from marginal sta-

bility one still requires that the eigenfunction is finite, and

a kinetic energy term with the proper value of ω2 has to be

added to Eq. (31) to make this possible.

2. Now consider the eigenfunction ξQ(x) associated with

a finite solution X(θ) of Eq. (31). This eigenfunction is not

periodic in θ and hence not physical but it does satisfy the

equation of motion at marginal stability (18), F (ξQ) = 0,

everywhere in the extended (ψ, θ, φ) space. The function

ξQ is called a quasi-mode. Note that the force operator itself

is periodic, F (ψ, θ, φ) = F (ψ, θ + 2π, φ). Hence, if the

shifted quasimode ξQ(ψ, θ + 2πk, φ) is a solution of the

force balance equation as well.

3. The force operator F is a linear operator.

4. The infinite sum

ξ(ψ, θ, φ) =
∞
∑

k=−∞

ξQ(θ + 2πk) . (34)

is clearly periodic in θ if it converges. We have effectively

wound the infinite θ-axis around the unit circle, summing the

contributions to the eigenfunction on it in the process. It is

clear that the proper boundary conditions for the generalized

Euler equation have to includeX → 0 for θ → ±∞ in order

to have a convergent sum.

We will now combine these four observations. Ac-

cording to observation 2, all terms in the sum (34) satisfy

the equation of motion at marginal stability and point 3

(linearity) guarantees that the sum (34), if it exists, also

satisfies this equation. Observation 1 states that the nec-

essary boundary conditions for the existence of the sum,

X(θ → ±∞) = 0, are satisfied in the case of marginal sta-

bility. Finally, according to point 4, expression (34) defines

a periodic solution of the marginal stability equation (18).

Expression (34) is a sum over many terms that have dif-

ferent values of the non-periodic function einS , which con-

tains the radial dependence of ξ. Note that the individual

quasimodes are not bounded in the radial direction since the

exponent vanishes nowhere. Fortunately, as pointed out by

Pegoraro and Schep [25], the sum (34) is radially localized

at the flux surface where we have solved Eq. (31). They

show that one can make a Fourier transformation from an ex-

tended poloidal coordinate to an extended radial coordinate,

and hence the poloidal and radial widths of the mode are in-

versely proportional. Loosely speaking, ballooning modes

tend to be rather localized in the radial direction when they

have an extended range in the poloidal coordinate.

Satisfied with the above picture, one can find the stabil-

ity at a given flux surface by solving Eq. (31) for that partic-

ular value of ψ. The coefficients in the differential equation

can be computed numerically from the q-profile, the pres-

sure gradient, and the shape of the flux surface. One usu-

ally obtains such data from a numerical equilibrium solver

(solver of the Grad-Shafranov equation) though in principle

one does not need a solution in the entire plasma in order to

find the stability of a single flux surface.

C. The Mercier criterion and β-limits

Straightforward integration of the ballooning equation (31)

is often numerically demanding because the coefficients

contain “slowly” and “quickly” varying functions of θ. The

quantity |∇S| is a steadily increasing function for θ → ∞.

On the other hand, quantities κ, J , and B are periodic func-

tions of θ. They can be considered rapidly oscillating func-

tions of θ on the scale on which |∇S| becomes large. One

can find the asymptotic behaviour of solutions X(θ) by a

procedure of averaging over the oscillating terms. For large
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θ equation (31) takes the form

d
dθ

(

θ2
dX
dθ

)

+DMX = 0 , (35)

where the so-called Mercier constant DM is a complicated

function of the equilibrium quantities on the flux surface. It

follows that the general asymptotic form of X(θ), i.e., the

general solution of (35) is

X = c+θ
λ+ + c−θ

λ− , λ± ≡ − 1
2 ±

√

1
4 −DM .

If DM < 1
4 there is a large solution ∼ θλ+ and a small so-

lution ∼ θλ− . The large solution makes the integral (28) in-

finite, so only the small solution is allowed. The ballooning

criterion is precisely the condition under which one solution

of (31) is asymptotically small, ∼ θλ− , for both θ → −∞
and θ → ∞. The situation is different if DM > 1

4 . In

this case both exponents λ± are complex and lead to oscil-

latory solutions with a finite energy content. In this case all

solutions of Eq. (31) are allowed, i.e., there is always insta-

bility and there is no ballooning stability boundary. It can be

shown that this situation is unstable by constructing radially

localized trial functions ξT for which δW (ξ∗T , ξT ) < 0, in-

stead of constructing proper eigenfunctions as required for

the ballooning stability criterion. The condition

DM < 1
4 . (36)

is the Mercier criterion [26]. It is a necessary condition for

stability. If it is violated instability occurs. If it is satisfied,

the plasma can still be unstable to ballooning modes. A sim-

ple closed form forDM can be derived for large aspect-ratio

circular flux surfaces. In this approximation the ballooning

equation takes the form

d
dθ

(

(1+P 2)
dX
dθ

)

+α
(

cos θ+P sin θ+V
)

X = 0 , (37)

where the “shear integral” P originates from |∇S| in

Eq. (31) and the potential term V gives the effect of the

“magnetic well” in the plasma centre. They are given by

P = sθ − α sin θ , V = ε
(

1−
1
q2

)

.

The quantities

s =
r
q
dq
dr
, α = −2

Rq2

B2

dp
dr
, (38)

are the magnetic shear and the normalized pressure gradient.

In this model the Mercier index is

DM = ε
α
s2

(

1
q2

− 1
)

. (39)

Combining Eqs. (36) and (39) one sees that Mercier insta-

bility requires q below unity, low shear, and a large pressure

gradient.

In the case that the Mercier criterion indicates stability,

DM < 1
4 , one can test Eq. (37) for ballooning instability.

Also in the case of ballooning modes one finds that generally

low shear is more unstable than high shear. This is under-

standable since instabilities tend to align with the magnetic

field on a given flux surface. The rate at which the mode and

the magnetic field become misaligned on neighbouring flux

surfaces is proportional to the magnetic shear. The pressure

gradient is destabilizing, and in general large α will lead to

instability. Surprisingly, Eq. (37) also implies that for very

large values of α and not too high shear a second regime of

stability exists. For such high pressure the Shafranov shift

gives rise to a very asymmetric plasma cross section, with

flux surfaces tightly pushed together a the low field side. In

that region the local magnetic shear (not the flux quantity

s defined in (38)) becomes high and stabilizes ballooning

modes. It turns that if the plasma cross section is strongly

triangular, the second stability regime is also accessible for

lower values of the pressure gradient, provided the magnetic

shear is negative.

Perhaps the most powerful application of ballooning

stability analysis is the numerical optimization of the total

plasma β by varying the p and q profiles and the plasma

shape, under the constraint that all flux surfaces be Mercier

and ballooning stable. The best known of such studies has

been carried out by Troyon et al. [27]. They have varied the

p and q profiles as well as the plasma elongation and trian-

gularity. Their stability criteria involve ballooning stability

on every flux surface. In addition, there are the constraints

q(a) > 2 in order to prevent m = 2 external kink modes

and q(0) > 1 in order to satisfy the Mercier criterion and to

avoid m = 1 internal kink modes. The resulting β-limit is

β = 0.028
I0
aB0

,

where the units are I0(MA), a(m), and B0(T). This result is

called the Troyon limit. It can be of limited validity for in-

stance when instabilities that are not listed above play a role.

A positive aspect is that a tokamak discharge may exceed the

Troyon limit if part of the plasma is in the second stability

regime.

In experiments, ballooning limits are often “soft”. This

means that when attempts are made to increase the tokamak

plasma pressure with intense heating, a certain pressure gra-

dient cannot be exceeded. This is probably related to the

fact that the instabilities near the ballooning stability limit

are very localized. The small amplitudes of the instabilities

are then seen as enhanced heat loss, not as a disruptive insta-

bility. However, ballooning modes have also been associated

with some of the Edge Localized Modes (ELMs) observed

in tokamaks. These modes appear repetitive as a sudden loss

of the outer layer of plasma from the tokamak.
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