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ABSTRACT 

An introduction is given to ideal MHD waves and the 

problem of resonant interaction between such waves and 

energetic ions born in fusion reactions and/or produced by 

auxiliary plasma heating. Shear Alfvén waves are shown 

to form a discrete spectrum of Global Alfvén Eigenmodes 

in current-carrying cylindrical plasmas and Toroidal 

Alfvén Eigenmodes in toroidal plasmas. A comparison 

between theory and experiment is presented for the 

observed discrete spectra of Alfvén waves driven by 

energetic ions in Joint European Torus. The mechanism 

of excitation of Alfvén instabilities is qualitatively 

explained by considering particle-to-wave power transfer, 

and mechanisms of wave-induced re-distribution and 

losses of energetic ions are discussed.    

 

 

I. INTRODUCTION 

 

Instabilities of Alfvén Eigenmodes (AEs)
1,2

 are an 

important issue for burning plasma studies, with weakly-

damped Toroidal Alfvén Eigenmode (TAE)
3
 representing 

the most dangerous mode that may limit the pressure of 

energetic ions and cause fast ion losses. Since 3.5 MeV 

alpha-particles are born in fusion deuterium-tritium (DT) 

plasmas at a speed exceeding the Alfvén velocity, these 

alpha-particles may excite TAE via Landau resonance 

AVV =α  if the power transfer from the alphas to the 

wave exceeds the wave damping by thermal plasma
4
. The 

Alfvén instability is driven by radial gradient of energetic 

particle pressure if the fast particles have energy high 

enough to resonate with Alfvén waves, and this instability 

cause a radial re-distribution of the energetic particles 

giving non-optimal heating profiles and energetic particle 

losses damaging the first wall. Without the energetic 

particles the modes are stable ideal magneto-

hydrodynamic (MHD) waves. The present lecture 

describes discrete weakly-damped AEs in cylindrical and 

toroidal plasmas and the fast particle drive and AE-

induced transport of the fast particles. 

 

I.A. Fast ions in fusion plasmas 

 

In present day experiments, energetic particles 

produced with auxiliary heating systems have very high 

parameters well suitable for investigating AEs with 

further extrapolation to burning plasmas with significant 

pressure of alpha-particles. On Joint European Torus 

(JET), energetic ions are produced with NBI and ICRH 

techniques capable of accelerating hydrogen isotopes H, 

D, T, and He
3
 up to the MeV energy range

5,6
. It is also 

possible to accelerate a population of He
4
 ions up to the 

MeV energy range with NBI+ICRH technique in helium 

plasma which has no fusion products
7
. Table I presents 

typical values of energetic ion populations achieved in 

JET experiments with ICRH, the values for alpha-

particles in JET deuterium-tritium (DT) plasmas, and 

expected alpha-particle values in burning ITER plasma. 

 

Table I. Characteristics of ICRH-accelerated ions and 

alpha-particles in JET and ITER: slowing down time, τS , 
heating power per volume at the magnetic axis, Pf  (0), 

ratio of the on-axis fast ion density to electron density, nf  
(0) / ne (0), on-axis fast ion beta, βf  (0), volume-averaged 

fast ion beta, 〈βf 〉 (%), and normalised radial gradient of 

fast ion beta, max| R∇βf  |.  
 

Reference JET
5,6

 JET
7
 JET

8
 ITER

9
 

Fast ions H or He
3
 He

4
 Alpha Alpha 

Source ICRH tail ICRH tail Fusion Fusion 

Mechanism minority 3
rd

 harm. 

of NBI 

DT 

nuclear 

DT 

nuclear 

τS (s) 1-0.9 0.4 1.0 0.8 

Pf  (0)  

(MW/m
3
) 

0.8-1 0.5 0.12 0.55 

nf  (0) /ne (0)  

(%) 

1-1.5 1.5 0.44 0.85 

βf  (0)  (%) 2 3 0.7 1.2 

〈βf 〉 (%) ≈0.3 0.3 0.12 0.3 

max| R∇βf  | 
 (%) 

≈5 5 3.5 3.8 

 

I.B.  Measuring Alfvén perturbations 

 

Alfvénic instabilities are observed as high-frequency 

perturbations, having a typical frequency in the plasma 

reference frame from 50 to 500 kHz. The observed 

spectrum of the instabilities is not continuous, but 

discrete, with TAE in the range of 100-200 kHz in the 

plasma reference frame. Elliptical Alfvén Eigenmodes
10

 

are also seen sometimes at a frequency twice that of 

TAEs, and Alfvén Cascade eigenmodes
11

 are seen in 

discharges with reversed magnetic shear at a frequency 

below the TAE frequency. The modes are detected by 
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external magnetic pick-up coils with a high sampling 

rate8,12. They can be also detected using interferometry13, 

reflectometry
14

, and electron cyclotron emission
11

. A 

typical magnetic spectrogram showing amplitude of 

magnetic perturbations as function of frequency and time 

is shown in Figure 1. Multiple TAE modes with different 

toroidal mode numbers are seen as a discrete spectrum in 

the frequency range 250-450 kHz in this plasma with high 

toroidal rotation that causes Doppler shift of frequency (to 

be described later). We’ll try to understand why the 

spectrum of TAE is discrete and what limits the number 

of unstable TAE.  

 

 
Fig.1. Magnetic spectrogram (Fourier decomposition as 

function of time) of a Mirnov coil signal. 

 

II. MHD WAVES WITHOUT FAST PARTICLES 

 

Plasma represents a self-consistent system of charged 

particles and perturbed electric and magnetic fields. For 

describing the plasma particles, we take into account the 

quasi-neutrality condition,   

∑ ⋅=
i

iie nZn  

and take velocity moments of kinetic Vlasov equations for 

electrons and ions and sum them to obtain 

( ) 0=⋅∇+
∂
∂

Vρ
ρ
t

; 

BJ
V

×+−∇=
c

p
dt

d 1
ρ ; 

0=⋅∇Γ+∇⋅+
∂

∂
VV pp

t

p
; 

0
1

=×+ BVE
c

; 

where ρ  and V are mass density and mass velocity of 

the plasma, p  is plasma pressure, and Γ  is adiabaticity 

index. This set of equations has no resistivity or other 

dissipative effects and described ideal magneto-

hydrodynamics (MHD) evolution of plasma. For 

describing electromagnetic fields in the plasma, 

Maxwell’s equations are used 

JB
c

π4
=×∇ ; 

t

B
E

∂
∂

−=×∇
c

1 ; 

0=⋅∇ B . 
 

For considering small linear perturbations of plasma near 

the equilibrium, all the field and plasma variables are 

represented as sums of equilibrium (denoted by subscript 

0) and perturbed (denoted by δ ) quantities as follows: 

0 δ= +J J J , 
0 δ= +B B B , δ=V V ,  

0p p pδ= + , δρρρ += 0
, EE δ= ,  (1) 

where all the perturbed quantities satisfy 1<<δ , i.e. 

1/ 0 <<JJδ  etc. We assume the time-space dependence 

corresponding to waves, )exp( ikrtiA +−∝ ωδ  in the 

limit mcBeiBi /0≡<< ωω . One can now substitute 

the expressions (1) in the starting set of equations and 

obtain equations with terms: a) not having δ  at all; b) 

having δ ; c) having 2δ  etc. The terms not having δ  are 

balanced due to the plasma equilibrium  

0 0 0

1
p

c
∇ = ×J B     (2) 

and terms linear in δ  describe ideal MHD perturbations: 

( ) 00 =⋅∇+
∂
∂

Vδρ
δρ
t

   (3) 

[ ] 00
4

1
BB

V
××∇+−∇= δ

π
δ

δ
ρ p

dt

d
 (4) 

[ ]0BVB ××∇=
∂
∂

δδ
t

  (5) 

δρ
ρ

δ
0

0pp Γ= .    (6) 

    

II.A. MHD waves in plasma 

 

Introduce plasma displacement from the equilibrium, ξ , 

related to Vδ  via t∂∂= /ξVδ . From Eqs.(3), (5) we find  

( )ξ0ρδρ div−=  

[ ]
z

div
∂

∂
+−=××∇= ⊥

⊥

ξ
BξBBξB 000δ  

where [ ] ( ) ( ) abbabaabba divdiv −+∇−∇=××∇ and 

zeB ↑↑0
 were used. Substitute the expressions for 

Bδδρ ,  in the remaining two equations and obtain  
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2

2
222

2

2

z
VdivVdivc

t
AAS ∂

∂
+∇+∇=

∂
∂ ⊥

⊥⊥

ξ
ξξ

ξ
, (7) 

where 
00

2 / ργ pcS =  is the ion sound speed, and 

( )0

2

0

2 4/ πρBVA =  is the square of Alfvén velocity. This 

equation describes linear MHD perturbations of 

homogeneous ideally conducting plasma. Single vector 

equation gives three scalar equations for three types of 

waves: compressional Alfvén and slow magnetosonic 

waves, in which the “returning” force are the magnetic 

pressure and the kinetic pressure, correspondingly, and the 

shear Alfvén wave, in which the “returning” force is the 

tension of magnetic field lines (see Figure 2). 

 
JG

01
.4

59
-1

cr

CA SA SM

 
 

Fig.2. Plasma displacement ξ  in three types of MHD 

waves
15

: Compressional Alfvén (CA), Shear Alfvén 

(SA), and Slow Magnetosonic (SM).   

 
In contrast to the compressional waves, the shear Alfvén 

wave is incompressible:  

0=zξ , 

0=⊥ξdiv . 

For such waves the main MHD equation becomes simply  

2

2
2

2

2

z
V

t
A ∂
∂

=
∂
∂ ⊥⊥ ξξ

,    (8) 

which coincides with equation for string oscillations. The 

“returning” force is the tension of magnetic field lines, 

which act similarly to the strings. In shear Alfvén wave 

the fluid displacement vector ξ  and Eδ are 

perpendicular to the magnetic field 
0B . The wave 

propagates along 
0B : 

AVk±=ω ;   00 /Bk Bk ⋅= ,  (9) 

and it has no parallel perturbed components, 

0,0 == BE δδ . In comparison to CA wave, SA 

wave requires less energy for excitation, and in 

comparison to SM wave, SA wave experiences less 

significant damping due to thermal ions since for typical 

plasmas 11.0/ <<≈= iATi VV β . As a result, the SA 

wave is easiest to excite, and this is why the SA wave 

constitutes the most significant part of the spectrum of 

MHD waves and is probably best studied.  

The description of shear Alfvén waves above 

assumed homogeneous plasma. In spatially 

inhomogeneous plasmas with ( )rVV AA =  and 

( )rkk = , the frequency of shear Alfvén waves, 

( ) ( ) ( )rVrkr AA ⋅=ω , varies with radius. A radially-

extended packet of SA waves in such spatially 

inhomogeneous plasmas has a finite life time (which may 

be also interpreted as wave damping) since the radially 

different “slices” of the wave packet propagate at 

different velocities along different directions of ( )rB . As 

time increases, the “slices” of local Alfvén waves become 

thinner in radius and run into the short wavelength region, 

∞→rk , where they are carried away due to the radial 

group velocity caused by finite Larmor radius (description 

of this effect goes beyond the scope of this lecture). The 

lifetime, τ , of the wave packet is inversely proportional 

to radial gradient of the local Alfvén frequency  ( )rAω ,  

 

( ) ( ) ( )
11 −−

⋅≡∝ rVrk
dr

d

dr

rd
A

Aωτ . 

   

 
Fig.3. Schematic picture showing spread of a radially-

extended wave-packet of shear Alfvén waves in 

inhomogeneous plasma.  
 

 The lifetime τ  increases if the wave-packet is localised 

in vicinity of an extremum point of ( )rAω ,  

( ) 0
0
==rrA r

dr

d
ω .  (10)  

It is of interest to investigate a possibility of existence of 

SA perturbations, which are localized in the vicinity of 

the Alfvén continuum extremum points and may be less 

damped  and thus have a longer life-time. 

 

II.B. Global Alfvén eigenmode (GAE) in 

cylindrical plasma with current 

 

Investigations of Alfvén spectrum in cylindrical plasmas 

with plasma current and condition (10) fulfilled have 
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revealed that in cylindrical geometry, in addition to the 

continuous SA spectrum, ( ) ( ) ( )rVrkr AA

2222 ≡=ωω , a 

discrete Global Alfvén Eigenmode (GAE) exists
16,17

. The 

mode was found as an extremely high-quality, Q ≡ ω/γ ~ 

10
3
, resonance excited in cylindrical plasma with co-

directed equilibrium magnetic field and current by an  

external antenna. Figure 4 shows the plasma response 

seen as the antenna coil impedance as function of the 

frequency scanned in the antenna. 
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Fig.4. Real part of the coil impedance versus 

normalized frequency. GAE discrete eigenfrequency 

is shown with broken line as a high-quality narrow 

resonance peak below  1/ min ==Ω Aωω . 

In cylindrical geometry, the length of the cylinder 

L determines the lowest parallel wave-vector as 

Lk /2min π=  so that the lowest SA frequency is still 

above zero. The ideal MHD mode GAE with 
min0 AGAE ωω <<  exists if the current profile provides a 

minimum in the Alfvén continuum via the condition: 

dr

dV

Vdr

dk

k

A

A

11
−= . 

5

4

3

2

1
0.5 1.00

ω A

r / a

JG
01

.4
59

-1
0c

m = -3

m = -2

m = -1

 

Fig.5. Structure of Alfvén continuum in cylindrical plasma 

with current and plasma density gradient.  

It is important to note that the frequency of GAE is 

actually below the Alfvén continuum. This frequency 

shift is caused by the well-known property of 

electromagnetic waves (to which the SA wave belongs to) 

of forming a waveguide at the extremum of perpendicular 

refraction index. Indeed, the local minimum of the Alfvén 

continuum seen in Fig.5 provides a maximum of the 

perpendicular refraction index ω/rr ckN = . Similarly to 

fiber optics, GAE propagating in a “wave-guide” 

surrounding the region of the extremum refraction index 

has most of the wave energy at the radial position of the 

extremum point. Figure 6 shows the radial structure of the 

GAE wave-fields.  
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Fig.6. Radial structure of Global Alfvén Eigenmode with 

m=-2 in cylindrical plasma with current and density 

gradient.  

 

Due to the frequency shift between GAE and 
min

Aω , the 

eigenfrequency of GAE does not satisfy the local Alfvén 

resonance condition, i.e.  

)(rAGAE ωω ≠     (11)
 

Therefore, although GAE has all the properties of the SA 

wave, it represents a coherent radially-extended wave-

packet, to which the phase mixing effect shown in Figure 

3 does not apply, so GAE has no continuum damping.  

 

II.C.  Toroidal Alfvén Eigenmode (TAE)  

 

In a torus, the wave solutions are quantized in 

toroidal and poloidal directions: 

( ) ( ) ( ) ( ) ..expexp,,, ccimrintitr
m

m +−+−= ∑ ϑφζωζϑφ

n  is the number of wavelengths in toroidal direction and 

m  is the number of wavelengths in poloidal direction. 

The parallel wave-vector for the m -th harmonic of a 

mode with toroidal mode number n , is determined by the 

safety factor ϑζ RBrBrq /)( =  as follows: 
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







−=

)(

1

0 rq

m
n

R
k
m

     (12) 

It was found
3
 that for a given )(rq  and n , but for 

different m  two cylindrical SA branches become 

degenerate in toroidal geometry at radial positions  

 )()()()(
1

rVrkrVrk AmAm +−==ω , (13) 

and so-called toroidicity-induced gap of the width 

0// Rr∝∆ ωω  exists at the frequency satisfying (13), 

with extremum points (10) caused by the toroidal 

coupling of neighboring poloidal harmonics m  and 1+m . 

In addition to the SA continuum, a new Toroidal Alfvén 

Eigenmode (TAE) was shown to exist in the TAE-gap. 

Figure 7 shows computed radial structure of Alfvén and 

SM continuous spectra in one of JET discharges, together 

with a discrete eigenfrequency corresponding to n=1TAE 

with eigenfrequency inside the TAE gap.  
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Fig.7. Radial structure of the Alfvén continuum 

in tokamak for toroidal mode number n=1.  

 
Similarly to GAE in cylinder, TAE frequency does not 

satisfy the local Alfvén resonance condition in the region 

of TAE localization,  

)(rATAE ωω ≠  

so TAE does not experience strong continuum damping. 

Most of the wave energy of TAE with mode numbers n ,  

m  is localised at the position of the extremum  where 

( ) ( )TAEmTAEm
rkrk

1+−= , i.e. 

n

m
rq TAE

2/1
)(

+
=     (14) 

as Figure 8 shows. 
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Fig.8. Radial structure of Toroidal Alfvén Eigenmode 

consisting of several coupled polidal harmonics.  

 

We substitute this value of safety factor in (13) to obtain 

characteristic frequency of TAE, 

( )
( )TAE

TAEA
TAE

rqR

rV

02
≅ω ,     (15) 

which does not depend on n  or m . For typical plasma 

parameters on JET,   

TB 30 ≅ ; 319105 −×= mni ; 
Di mm = ;  

one obtains smVA /106.6 6×≅ , so that TAE frequency 

on JET ( mR 30 =  and, e.g. 1≈q ) is: 

16 sec10 −≅TAEω  ; kHzf TAETAE 1602/ ≅≡ πω . 

We also note that the radial width of poloidal harmonic of 

TAE is  

nqrmr TAETAETAE // ≈≈∆ . 

Figure 9 shows experimentally observed TAE and 

EAE modes driven by ICRH-accelerated ions in one of 

JET discharges, together with computed TAE and EAE 

frequency gaps. At a low speed of toroidal rotation of the 

plasma, the frequencies in the plasma and laboratory 

reference frames are nearly the same, and the modeling of 

AE can be directly applied to the observation without the 

Doppler shift correction.   
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Fig.9 Magnetic spectrogram of AE activity excited by ICRH 

ions (left) and Alfvén continuum spectrum for n=1…6 as 

functions of radius (right) 
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In JET discharges with high power NBI, the uni-

directional NBI spins up the plasma and drives a significant 

toroidal plasma rotation (up to 40 kHz). Frequencies of 

waves with mode number n  in laboratory reference frame, 

LAB

nf , and in the plasma, 
0

nf , become different then and 

are related through the Doppler shift )(rnf rot : 

)(0 rnfff rotn

LAB

n += . 

The Doppler shift proportional to the toroidal mode number 

explains why TAE are seen at much higher frequencies in 

Figure 1. Figure 10 shows an example of the observed and 

computed TAE modes in JET discharge with strong toroidal 

plasma rotation when the Doppler shift is included.   

 

 
Fig.10 Discrete spectrum of TAE observed in JET 

discharge #40332. Plasma starts at t=40 sec (left) and 

eigenfrequencies of TAEs with n=4…9 computed for 

equilibrium in JET discharge #40332 (right). 

 
III. TAE EXCITATION BY FAST PARTICLES 

 

TAE modes have perturbed electric and magnetic field 

components, ⊥Eδ , and ⊥Bδ , perpendicular to the 

equilibrium magnetic field 
0B , but no parallel electric or 

magnetic fields. It is important to understand how such 

modes could be excited by energetic particles in toroidal 

geometry. 

 

III.A. Qualitative explanation of the particle-to-wave 

power transfer 

 

If some energetic ions move along B0 with velocity close to 

the phase velocity of the wave VA, the wave exchanges 

energy with such ions. For the ideal MHD shear Alfvén 

wave, it is the perpendicular electric field ⊥Eδ of the wave 

that interacts with the ions since, in toroidal geometry, the 

ions undergo the magnetic field curvature and B∇  drifts 

across the magnetic field. The drift surfaces of the energetic 

ions deviate from the magnetic surfaces to which the TAE 

mode is attached as shown schematically in Fig.11 for 

passing and trapped energetic ions. 
 

 
Fig.11 TAE modes are attached to magnetic flux 

surfaces, while energetic particles are not: they drift 

across the flux surfaces and TAE structure. 

 

The exchange of energy between TAE and the ion 

occurs when the ion moves from, say, point A to point B 

across the radial structure of the mode and gains or loses 

energy ϕ∆− he , where, ( )rϕ  is electrostatic potential 

associated with the mode, and he  is the charge of 

energetic ion labelled by subscript “h” ( for hot ion). In 

the guiding centre approximation, the power transfer hP  

from the ion to the mode is given by 

 ⊥⋅−= Ev δdhh eP ,      

where dv  is unperturbed guiding centre drift velocity.  

 
Fig.12 When charged particle moves radially across 

TAE from point A to point B, the mode and the 

particle exchange energy φ∆e  as this Figure shows. 

  

The particle-to-wave power transfer for the whole 

distribution function of energetic ions takes the form  

 ( ) xvddfeP hdhh

33∫∫ ⊥⋅−= Ev δ ,  

where 
hf  is the linear perturbed distribution function of 

hot ions. The most significant contribution to the power 

transfer comes from ions satisfying the wave-particle 

resonance, 00 =−− ϑϕ ωωω ln , where ϕω  and ϑω  

are the toroidal and poloidal orbit frequencies of the 

energetic ions, and l  is an integer. 
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Analytical estimates of the power transfer could be 

done in the reference frame of the energetic ion, which 

“sees” TAE electric field along its orbit as, e.g. a shifted 

circle in the simple case of the passing ions
19,18

:  

ϑcosOrr ∆+= ,  

ϑϑϑϑ ≈
∆

−= sin
r

O . 

The structure of TAE electrostatic potential ( )rmφ  in the 

reference frame of the ion could be expanded as, 

( ) ϑφϑφ lr
l

lmOm coscos
0

,∑
∞

=

=∆+  

This poloidal dependence gives resonance conditions: 

...
5

1
,

3

1
,1

21
=

−
=

l

V
V A  

showing that TAE can interact with sub-Alfvénic ions at 

satellite resonances
2,18

. In the presence of gradients of the 

energetic particle distribution function, rf ∂∂ /0
 and Ef ∂∂ /0

, 

and in the limit of the ion orbits smaller than the radial width 

of TAE, the expression for the normalized growth rate of 

TAE, γ  , is given by  

 
















−≅= ∗

h

Ah
h

TAE

h

V

V
F

W

P
1

2 00 ω
ω

β
ω
γ ,   

where  

 
dr

pd

Be

T

r

m h

h

h
h

ln
−=∗ω     

is the diamagnetic frequency of the energetic ions, 
hβ , hp , 

and 
hT  are the beta value, pressure, and temperature of the 

energetic ions, WTAE is the wave energy of the mode, and 

function ( )hA VVF /  depends on the type of energetic particle 

distribution function.  

It is clear from Fig.12 that the particle-to-wave power 

transfer determined by the value ϕ∆− he  has a non-monotonic 

behavior as function of the ratio between drift orbit width and 

TAE width, so the power transfer achieves a maximum at 

1/ ≈∆∆ TAEO

18
 as Figure 13 shows  

0 1

JG
09

.3
92

-6
c

 
Fig.13. Qualitative graph showing how the power 

transfer depends on the ratio between fast particle 

drift orbit and radial width of TAE. 

The net power transfer from energetic particles to the 

mode becomes positive if the radial gradient of the 

energetic particles is high enough to satisfy 

1/ 0 >∗ ωω h . The amplitude of the mode increases if the 

growth rate due to energetic particles exceeds TAE 

damping rate.  

 

III.B. Experimental validation of TAE instability 

zone 

 

One can observe experimentally how TAE modes are 

excited one-by-one at increasing pressure of energetic 

ions. Figure 14 shows JET discharge with gradually 

increasing power of ICRH driving TAE.  

 

 
Fig.14. Power waveforms of ICRH and NBI in JET 

discharge # 40329. 

  

As the population of ICRH-accelerated energetic ions 

increases, TAE modes with different toroidal mode 

numbers got excited one-by-one as Figure 15 shows. The 

instability starts from the most unstable TAE with 8=n  

satisfying the maximum power transfer condition, 

/TAE orbitm nq r≈ ≈ ∆ , and then involves more stable 

TAEs with other toroidal mode numbers at higher fast ion 

pressure.  

 
Fig.15. TAEs with different toroidal mode numbers 

appear one-by-one as fast ion pressure increases (JET 

discharge # 40329). 
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IV. TAE-INDUCED ENERGETIC PARTICLE 

TRANSPORT 

 

Non-linearly the TAE instability leads to a radial 

flattening of the fast ion distribution function. However, 

losses of fusion born alphas must be minimized down to 

few percent (<5% on ITER
9
) for avoiding the first wall 

damage. Also, a radial redistribution of the alphas could 

give a non self-consistent alpha-heating profile and He 

ash profile and may affect the burn
21

.  

 

IV.A. Qualitative estimates 

 

The unperturbed orbit of a charged particle is 

determined by three invariants: 

2

2

⊥≡
Mv

µ ; 
2

2Mv
E ≡

; ( ) ϕϕ ψ RMvr
c

e
P +−≡  

In the presence of a fixed amplitude TAE, neither E  nor 

ϕP  is conserved for the ion orbit, but their combination is 

still invariant: 

constP
n

E =− ϕ
ω

 

It is easy to see that a change in the ion energy is related 

to change in the ion radius induced by TAE as follows
22

: 

r
nc

e
P

n
E ∆′≅∆=∆ ψ

ωω
ϕ

. 

We can see then that the interaction between TAE 

and fast ions causes radial transport of the ions at nearly 

constant energy.  

 

IV.B. Two main types of TAE-induced re-

distribution and losses 

 

In present-day machines, fast ion orbits are comparable to 

the machine radius, 110/ 1 ÷≅ −aαρ . A single-mode 

‘convective’ transport linearly proportional to TAE 

amplitude 
TAEBδ∝  is important as Figure 16 shows. 

 
Fig.16. TAE-induced conversion of passing confined 

to a trapped lost ion on JET.  

 

 However, for ITER with parameter 210/ −≅aαρ  the 

dominant channel of alpha-particle transport will differ 

from present-day machines. On ITER, higher-n (n > 10) 

TAEs will be most unstable. Under these conditions, a 

transport of alpha-particles is due to the wave-particle 

resonance overlap leading to a global stochastic diffusion, 

with the transport 2

TAEBδ∝ . Figures 17 shows an 

example of stochastization of drift orbit surfaces and the 

resulting transport of alpha-particles computed for JET
22

.  

 

 
Fig.17. Stochastization of drift surfaces of fusion 

alpha-particles at increasing TAE amplitude. 
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