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ABSTRACT

Tearing modes often limit the performance of toka-

mak plasmas, because the magnetic islands which they

generate lead to a loss of confinement, or even a disrup-

tion. A particularly dangerous instability is the neoclassi-

cal tearing mode, which can grow to a large amplitude

because of the amplification effect that the bootstrap cur-

rent has on an initial ‘seed’ magnetic island. This paper

will address the mechanisms which dominate the neoclas-

sical tearing mode evolution, and thereby identify possible

control techniques.

I. INTRODUCTION

The good confinement of the tokamak is achieved

because to leading order the ions and electrons follow the

magnetic field lines, which in turn lie on toroidally sym-

metric, nested magnetic flux surfaces. However, there are

a number of plasma instabilities which can modify the

magnetic geometry and so lead to a reduction in confine-

ment and a loss of plasma stored energy. In this paper we

shall concentrate on a particular type of instability, the

tearing mode, and explore its consequences for tokamak

performance. One consequence of the tearing mode insta-

bility is that the plasma adopts a new, non-symmetric equi-

librium (or, if the instability is particularly violent, the

plasma can be lost altogether in a disruption). This new

equilibrium is characterised by a chain of magnetic is-

lands, and field lines can migrate radially around these

over a distance comparable to the island width. The result

is that the radial particle and energy flux is enhanced in the

regions where the magnetic islands form, and the overall

confinement is degraded (eg the central plasma tempera-

ture is reduced). For this reason, understanding the causes

of tearing modes is an important part of tokamak physics

research, and this paper provides a brief review of the pro-

gress made in our understanding, and the gaps that remain.

We shall begin in Section II with a brief summary of

the basic properties of tearing modes, and provide a simple

derivation of the ‘classical’ (Rutherford) tearing mode

evolution equation
1
. Then in Section III we shall address a

number of other mechanisms which can contribute to the

tearing mode evolution in toroidal plasmas to derive, heu-

ristically, the so-called modified Rutherford equation for

neoclassical tearing modes (NTMs). In Section IV we shall

explore the experimental evidence for neoclassical tearing

modes and make comparisons with the theory. Finally, in

Section V, we shall consider some of the control methods

which have been proposed, largely motivated by our theo-

retical understanding of these instabilities.

II. CLASSICAL TEARINGMODE PHYSICS

Let us begin by introducing some of the terminology

associated with tearing mode physics, broadly following

Ref [2]. To simplify the geometry, let us take an annulus

of toroidal plasma with major radius R (say between minor

radii r=r1 and r=r2), and cut this open in the toroidal and

poloidal directions to form the plasma slab shown in Fig 1.

We have placed an island chain at the radial position r=rs
and indicated the positions of the so-called X-points and

O-points of the island. It is conventional to define the

mode structure in terms of the dominant Fourier compo-

nents of the island; the case shown in Fig 1 has poloidal

mode number m=2 and toroidal mode number n=1. Note

that the dashed line connecting the island O-points is ap-

proximately a line of symmetry in the large aspect ratio

approximation of the tokamak. Thus the island magnetic

geometry can be defined in terms of three coordinates: the

radial variable, r, the poloidal angle, , and a new helical

angle, , which is directed along a line perpendicular to

r

Fig. 1. A toroidal annulus of plasma showing flux surfaces

forming magnetic islands. The annulus has been cut along

the poloidal ( ) and toroidal ( ) directions and opened out.
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that connecting the island O-points

m

n
(1)

Again adopting a large aspect ratio approximation,

we see that the component of magnetic field in the helical

direction is given by

rq
m

n
BBh 1 (2)

where B is the poloidal component of the magnetic field

and q(r) is the safety factor. The role of the tearing mode

instability is to provide the radial component of magnetic

field required to generate a magnetic island. Denoting this

by B=Brsinm , and noting that a field line will follow a

trajectory given by

hs B

B

dr

dr
(3)

we see that the radial excursion of field lines is negligible

unless Bh is small (we consider that the radial field gener-

ated by the tearing mode is typically much smaller than the

equilibrium magnetic fields imposed in the tokamak by the

machine operator). Thus the largest radial excursions are

experienced at the radial position where q=m/n; that is,

island chains form on rational surfaces. Taylor expanding

q about the rational surface r=rs, then we can use Eq (2) in

Eq (3) to derive the following equation for the field lines:

m
w

x
cos

2
2

2

(4)

where x=r rs, is a flux surface label (a constant of the

integration) and

2/1

/
2

drdqmB

rqB
w r (5)

is the island half-width. Note that =1 defines the island

separatrix, -1< <1 defines flux surfaces inside the island

and >1 defines flux surfaces outside the island.

Having described the geometry and introduced the

essential terminology, we are now in a position to describe

some of the basic theoretical principles behind tearing

modes. The theory can be broadly categorised into linear

and non-linear theory. We shall be concerned with larger

magnetic islands, so that the non-linear theory is the ap-

propriate one to adopt here. Above, we characterised the

perturbation in terms of the radial magnetic field it pro-

duced; in fact we shall find it more convenient to instead

use the flux function, . Thus we define the perturbed flux

rR

m
Bm r

~
cos~ (6)

where
~
is related to Br and is assumed to vary only

slowly with radius over the island width length scale. In

terms of , the total magnetic field is given by

)()(rfB , (7)

where f(r)=RB and r is the poloidal magnetic flux. Let

us restrict consideration to small magnetic islands whose

width is much less than the tokamak minor radius. Then

the current perturbation is small, and we are justified in

assuming that varies only slowly with r. For islands

whose width is much less than their length, Ampere’s law

relates to the current density perturbation parallel to the

magnetic field, J||:

||02

2
1

J
dr

d

R
, (8)

Another condition on the validity of this expression is that

the perturbed current is localised about the island region so

that, although d /dr is small, it changes rapidly in a nar-

row region in the vicinity of the island so that its second

derivative need not be small. Making use of this we inte-

grate across the island region from r= l to r=l, where

rs>>l>>w is assumed. In addition we define a parameter

which characterises the jump in d /dr across the island,

conventionally denoted by the symbol ':

lrlr
l dr

d

dr

d1
lim (9)

As a result we arrive at the following basic equation for

tearing mode evolution:

mJddxR cos2~
||0 (10)

The next task is to determine the perturbed current.

Note that it is only the current parallel to the magnetic field

that contributes to the island evolution equation. The sim-

plest model is that considered by Rutherford
1
, in which the

only contribution to J|| comes from the induced current

associated with island growth. Thus, for an island which is

evolving, so that has a time-dependence, an electric field

proportional to d /dt is generated parallel to the magnetic

field (note that is proportional to the component of the
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perturbed vector potential in the magnetic field direction).

This gives rise to a current via Ohm’s law:

|||| cos
~

m
t

J (11)

where is the plasma resistivity, is the electrostatic po-

tential and || is the derivative along the perturbed magnet-

ic field lines of the island.

It is worthwhile spending a little time considering the

|| operator, which is defined as

,

||

,

||

1
k

RqB

B
(12)

where k||= mx/rLs and Ls=Rq/s, with s=(r/q)(dq/dr) being

the magnetic shear. A useful procedure is to define an av-

erage over the two angles, and , which annihilates the

|| operator. We shall indicate this averaging procedure by

angled brackets, defined as

11

cos

1

cos

1

cos

1

cos

b

b

b

b

dd

dd

dd

dd

(13)

where cos b= and =x/|x|. We can now use this averag-

ing operator to eliminate from Eq (11) as follows. First

we note that we expect J|| to be a function only of , due

to the fact that we neglect particle drifts perpendicular to

the magnetic field for the present (so that perpendicular

currents must also be absent), and therefore we must satis-

fy J= ||J||=0. Thus, we arrive at the result

m
t

J cos
~1

|| (14)

and substitution of this into Eq (10), together with Eq (5),

yields the classical Rutherford tearing mode evolution

equation:

2
1 sr r
dt

dw
a , (15)

where r= 0rs
2
/ is the current diffusion time and a1=0.82

is associated with the island geometry. Note that this equa-

tion predicts that an island will grow linearly in time pro-

vided ' >0, at least initially when the island is sufficiently

small that ' is independent of w. Clearly the parameter '

is important for the stability of tearing modes, and it is

therefore useful to say a few more words about its physical

significance, and how it is determined.

Recall that we have assumed that is approximately

independent of r in the vicinity of the island, and so far we

have only solved for , or equivalently w, in that region.

Away from the island region, two simplifying approxima-

tions can be made: (1) the plasma response is linear, and

(2) resistivity is unimportant. Thus, away from the island

region the equations of linear ideal magneto-

hydrodynamics (MHD) can be used to evaluate (r) (note

that over the longer length scales across the plasma minor

radius, the r dependence of cannot be neglected, and

indeed is calculated from the ideal MHD equations). Ap-

plying appropriate boundary conditions at the plasma edge

and centre, and integrating the MHD equations from the

centre out to the rational surface, and from the edge into

the rational surface, one can calculate (r) over the full

plasma region, taking to be continuous at the island ra-

tional surface. In general, one will find that this solution

will have a discontinuous gradient at the rational surface,

and from this one can calculate ' from the ideal region

using Eq (9), but replacing l with the limit as r rs from

below, and +l with the limit as r rs from above. This is

basically a matching condition between the solution for

in the ideal MHD region and that in the island region.

Thus we see that ' is a property of the global plasma

equilibrium, and in the limit of small islands (w<<rs) is not

influenced by the presence of the island itself. Indeed, it

can be shown that ' represents the free energy available in

the plasma current density distribution to drive the tearing

mode. In the following sections we will see how other

effects can modify the evolution of tearing modes, but

these are different from the ' drive in that they originate

from the island region itself.

III. THE MODIFIED RUTHERFORD EQUATION

In the previous section we considered only the in-

ductive contribution (due to island growth) to the per-

turbed current, J||. In this section we consider a number of

other contributions, which together constitute the ingredi-

ents of the so-called neoclassical tearing mode (NTM).

Let us begin by considering the most important el-

ement: the perturbed bootstrap current
3,4
. The bootstrap

current is a current which flows along the tokamak mag-

netic field lines due to the combined effect of the trapped

particles and the density and temperature gradients which

exist. We do not go into the details of this current here, but

it suffices to know that the bootstrap current is proportion-

al to a linear combination of density and temperature gra-
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dients, and requires the plasma to be in a low (so-called

‘banana’ or ‘plateau’) collisionality regime so that trapped

particles can perform a complete orbit before being de-

trapped by collisions. For our purposes it is sufficient to

use a simple model for the bootstrap current, which we

express in the form:

dr

dp

B
J bs 44.2 (16)

This expression is accurate in the limit of small inverse

aspect ratio, , and zero temperature gradient (p denotes

the plasma pressure).

The main reason for a perturbation in the bootstrap

current in the vicinity of the island is due to the island’s

effect on the plasma pressure there. Suppose that at some

initial time there exists a magnetic island. There is rapid

parallel transport along field lines so that the pressure is

approximately a flux surface quantity; this means that in

the absence of heat and particle sources inside the island,

the pressure gradient tends to be removed from inside the

island. From Eq (16) we therefore see that the bootstrap

current is removed from inside the island, whilst outside

(where a pressure gradient is still maintained across the

flux surfaces) the bootstrap current remains. Thus there is

a ‘hole’ in the bootstrap current which exists around the

island O-points; ie there is an additional contribution to J||
which has the required cosm component to contribute to

the island evolution in Eq (10). Thus, if we now combine

this contribution with the inductive contribution, Eq (14),

and substitute the total J|| into Eq (10) (using Eq (5) for the

island width in place of ), we find:

p

q

s

r

L

L

w
a

dt

dw

r
a 221 (17)

We have introduced a new numerical factor a2, which

originates from the integral over space, the poloidal beta,

=2 0p/B
2
, Lq

-1
=dlnq/dr and Lp

-1
= dlnp/dr. Note that in

normal tokamak situations Lq/Lp>0 and therefore the boot-

strap current term usually contributes a drive for the tear-

ing mode (a notable exception is the case of reverse shear

discharges, where Lq<0). Indeed, for sufficiently small

island widths the bootstrap term is the dominant one, so

that even in situations when the plasma is stable to the

classical tearing mode, the effect of the bootstrap current is

to drive it unstable. In such cases the instability is called a

neoclassical tearing mode.

Let us suppose that we are in this neoclassical tearing

mode instability regime, so that '<0. It is useful to plot

dw/dt as a function of w, and this is shown in Fig 2. There

is an important value of w=wsat for which dw/dt=0: for

w<wsat, dw/dt>0, so the island will grow until w=wsat; for

w>wsat, dw/dt<0, so the island will shrink until w=wsat.

Thus we see that w=wsat is a stable point, corresponding to

the saturated island width that the neoclassical tearing

mode will evolve towards. We can use Eq (17) to derive:

p

q

ss L

L

r
a

r

w
2

sat (18)

In order to gain an order of magnitude estimate of the ef-

fect, let us further suppose that Lq~Lp and that rs '~ 2m

(which is correct in the asymptotic limit of large m); then

we find that

mr

w

s 2
~sat (19)

Equation (19) illustrates why these modes are so danger-

ous: as we increase the island will grow, leading to an

ever increasing degradation in confinement; eventually a

situation would be reached where all the heating power

which is put into the plasma is immediately flushed out by

the island, and it will be impossible to increase further.

In this sense, the NTM provides a ‘soft’ -limit. However,

particularly for low m modes, we see that Eq (19) predicts

that island sizes can become comparable to the minor radi-

us of the tokamak: then we would expect the plasma to

respond violently, and terminate in a disruption.

If Eq (17) represented the full story, then the future

of the tokamak would be exceedingly bleak, and indeed it

would not have enjoyed the success it has had, particularly

in recent years. The point is that, according to Eq (17), all

neoclassical tearing modes which have a rational surface

in the plasma would be unstable and the confinement

would be completely wrecked. This clearly is not the case,

Fig. 2. The island growth as a function of the width,
from Eq (17) indicating the saturated island width solu-
tion at w=wsat.

dt

dw

w
satw

0
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and so there must be more to the story. Indeed there are

additional effects which are important when the island size

is very small. For such small islands the theory is seriously

complicated by both finite particle orbit width effects and

finite radial transport effects. To illustrate this, note that

the theory used to calculate the bootstrap current expres-

sion given in Eq (16) is based on an expansion in the ratio

of ion banana width to the equilibrium length scales, as-

sumed small. Clearly, then, for islands whose width is of

order the ion banana width, Eq (17) may be flawed. In-

deed, all rigorous analytic calculations of the modified

Rutherford equation to date rely on an expansion in the

ratio of the ion banana width to the island width: this

therefore sets the scale at which the theory must be ques-

tioned. Let us now look briefly at two additional effects

which may be important for such small islands.

We begin with the effects of radial diffusion
5,6
. Re-

call that we made the statement that the pressure gradients

would be removed from inside the island region. This is a

statement that the parallel transport effects dominate the

radial diffusion. For arguments sake, let us consider a

model for the electron heat transport (the particle transport

is further complicated by the requirement that we expect

quasi-neutrality to be maintained and the parallel transport

would be dominated by sound waves). In steady state, and

in the absence of any heat sources, we expect Q=0,

where Q is the heat flux. Suppose the heat flux parallel to

the field lines is given by Q||= n || ||T and that perpen-

dicular to the field lines is Q = n T where || and

are the thermal diffusivities parallel and perpendicular to

the magnetic field, respectively, n is the density and T is

the temperature. Taking these diffusivities to be approxi-

mately constant over the island width length scale of inter-

est, we deduce

022

|||| TnTnQ (20)

Now if the perpendicular transport can be neglected, then

Eq (20) clearly provides the result that the temperature is

constant on a field line (and it then follows that it must be

constant inside the island). Suppose we now consider the

conditions under which the perpendicular transport effects

cannot be neglected. It is easiest to assume that T is inde-

pendent of , ie T=T( ), and then the parallel operator

can be taken to be of order mw/(RqLq) (see Eq (12) and

note that the relevant length scale in k|| is x~w). For the

perpendicular gradients, the relevant length scale is again

w, and so we deduce that the radial transport term will

compete with the parallel transport term when

2||222

22

~
wLqR

wm

q

(21)

that is, for a sufficiently small magnetic island. Rearrang-

ing Eq (21) we can therefore deduce a critical island width,

w , below which the pressure is not flattened across the

island, and therefore the drive for the NTM is reduced:

4/1

||m

RqL
w

q
(22)

[Note that in hot, collisionless plasmas, free streaming

dominates the parallel transport, resulting in a balance

k||v||~
2
, and a different scaling for w ]. To estimate the

size of w and how it scales with plasma parameters is

difficult because this needs knowledge of the perpendicu-

lar heat diffusivity in the plasma, and this is not well-

understood. If one puts in neoclassical heat diffusivity,

then one obtains a very small value of the order 1mm:

clearly the NTM model we have described is not appropri-

ate at such small scale lengths, when finite Larmor radius

effects will inevitably play a role. However, we know that

in tokamaks the perpendicular heat flux is larger than the

neoclassical prediction because of the plasma turbulence.

As one possible model for this, let us assume that the

transport has a gyro-Bohm scaling, ie ~ i
2
vthi/r, where j

is the Larmor radius and vthj is the thermal velocity (j la-

bels ions or electrons). Taking a collisional model for the

parallel diffusivity, ||~vthe
2
/ e, where e is the electron

collision frequency, we then have the estimate:

8/1

4/14/1~
i

e
e

iq

m

m
q

m

L
w (23)

where mj and *j are the mass and collisionality of species

j, respectively. If we take typical tokamak parameters, then

we find that this predicts a value in the region w ~1cm.

This value puts us above the length scales where Larmor

radius effects are important, but is typical of the ion bana-

na width in a tokamak, and therefore we remain in a re-

gime where finite orbit width effects need to be taken into

account. [Note that the parallel transport of density and ion

heat is slower that that of the electron heat, and thus w

would be somewhat larger for these quantities.]

Let us now consider finite orbit width effects. There

is no simple model to describe these, and therefore we will

not attempt to reproduce the analysis here, but instead re-

strict ourselves to a discussion of the origin of the effect.

Interested readers can consult the reference list for the

more detailed theory, which is an evolving subject
7-14
. For

small magnetic islands with width comparable to the ion

banana width, the ions and electrons respond differently to

the perturbed magnetic surfaces. For the electrons, the
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parallel streaming (ie the v|| || term in the kinetic equation)

dominates their response, and the electron distribution

function will adjust so that, to leading order, it will be con-

stant along the perturbed field lines. In contrast, for the

ions the E drift dominates their response. Clearly the

ion density must be a flux surface quantity if the electron

density is (to satisfy quasi-neutrality) and therefore the

E drift must be strongest along the perturbed flux sur-

faces. This, in turn, means that an electrostatic potential

must be generated which is constant on the island flux

surfaces. Away from the island (ie a few island widths

away) both the electron and ion distribution functions are

unaffected by the island, and therefore this electrostatic

potential is localised around the island.

Having established that an electrostatic potential is an

essential feature of any small scale island, let us now con-

sider the more detailed consequences of this. The trapped

ions will execute their banana orbits, and in doing so will

experience an average of the potential over these orbits.

The electrons, on the other hand, have a much narrower

banana orbit, and they will experience the local potential.

The consequence of this is that the E drifts of the two

species will differ, and therefore a current perpendicular to

the magnetic field will be generated. This is the neoclassi-

cal polarisation current. We noted below Eq (10) that only

a current parallel to the magnetic field can affect the island

evolution. However, one finds that the divergence of this

perpendicular current is not zero and therefore a small

electric field is generated, directed along magnetic field

lines. This accelerates the electrons to generate a parallel

current (the sum of this parallel current and the perpendic-

ular current is divergence-free), and this does contribute to

the island evolution. An additional feature of the neoclas-

sical polarisation current is that when the ion collision

frequency is sufficiently high, ie i/ >1 ( is the island

propagation frequency in the frame where the electric field

far from the island is zero), the drift information carried by

the trapped ions is communicated to the passing ions, lead-

ing to a large amplification of the polarisation current
9,10
.

If one works through the algebra, one finds that this

polarisation current contributes an additional term to the

modified Rutherford equation, known as the polarisation

term. A final point to note is that this polarisation term

depends on the island propagation frequency , and can be

either stabilising or destabilising. This complicates matters

because additional, uncertain, physics related to plasma

dissipation processes (eg viscosity or Landau damping)

needs to be introduced in order to determine , and here

the theory is as yet incomplete
15
. What is generally as-

sumed, and this will suffice for our purpose, is that the

mode frequency is such that the polarisation current pro-

vides a stabilising effect (without this assumption it is dif-

ficult to interpret the experimental data, which we come to

in the next section). The result is our final expression for

the modified Rutherford equation, which becomes:

wL

L

w
ga

ww

w

L

L

w
a

dt

dw

r
a

p

qbi
i

p

q

s

r

22

3

22

2

221

,

(24)

1/

1/64.1
,

1

2/1

i

i
ig (25)

bi is the ion banana width and a3 is a third numerical coef-

ficient associated with the spatial integral (which appears

in Eq (10)) and the value of . Equation (24) can be de-

rived using drift-kinetic theory, provided the island width

is larger than the ion banana width and w 0
9
. We shall

assume that the expression actually holds for island widths

down to the ion banana width, but stress that as yet there is

no theoretical justification for this assumption. Such a jus-

tification is a challenging task, which can probably only be

addressed through large scale computational modelling
12
.

Fig. 3. Plots of dw/dt versus w for (a) the transport
threshold model, and (b) the polarisation current mod-
el. Curves for equal to its critical value and exceed-
ing this value are shown.

w

> c

= c

w
dt

dw

(a)

dt

dw

> c

= c
3wc w

(b)

wc
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Note that we have taken account of the effect of the radial

transport through a modification of the bootstrap current

term: this modification is an interpolation formula, which

reproduces Eq (17) for w>>w and also reproduces the

results of linear theory in the opposite limit w<<w
5
. Equa-

tion (24) thus provides a model which includes all the es-

sential ingredients of neoclassical tearing modes. [There is

an additional, so-called ‘Glasser’ stabilising term
16,17
,

which we have not discussed here due to space limitations;

this may be particularly important for spherical toka-

maks
18
.]

Both the radial transport effects and the polarisation

current can provide a threshold for NTMs. Let us first take

a3=0 and consider finite w : this is shown in Fig 3a (to be

compared with Fig 2, where no threshold effects were in-

cluded). We see that for < c dw/dt<0 for all w, so any

initial ‘seed’ perturbation which led to a magnetic island

would always decay away. However, for > c the situa-

tion is particularly interesting: there are now two values of

w for which dw/dt=0. For w<w c, dw/dt<0 and the island

will tend to shrink, while for w>w c, dw/dt>0 and the is-

land will grow; indeed it will continue to grow until w

reaches wsat, when dw/dt=0 again. For w>wsat, dw/dt<0 and

islands will decay. Thus we note that w=wsat again corre-

sponds to a stable point, corresponding to a saturated is-

land. On the other hand, the point w=w c is an unstable

point: it corresponds to a threshold in that an initial ‘seed’

island width must exceed this value for the island to grow

to the large width w=wsat. Thus, for this model, two condi-

tions are required for growth of the NTM: both and the

‘seed’ island width must exceed critical values. These crit-

ical values, which can be deduced from Eq (24), are

q

p

c
L

L

a

w

2

2

2

c

c

w
w (26)

where the expression for w c is given for far above

threshold (at threshold w c=w ).

We turn to the polarisation term (a3 0) and set w =0. Fig

3b shows dw/dt as a function of w; we see that it is essen-

tially of the same form as that obtained from the transport

effects, described above. Again we see that thresholds in

both and w need to be exceeded for island growth, and

they can be deduced from Eq (24):

bi

q

pi
c

c

q

p

c

L

Lg

a

a
w

w
L

L

a

4/1
2

3

2

,

3

2

33

(27)

The expression for wc is given for far above threshold

(at threshold wc is simply a factor 3 larger). There are two

important points to note about this result: (1) the threshold

is predicted to be significantly larger in the collisional re-

gime (through the variable g, see Eq (25)) and (2) the

thresholds are proportional to the ion banana width.

IV. EXPERIMENTAL EVIDENCE

The first evidence for neoclassical tearing modes in a

tokamak came from measurements on the TFTR toka-

mak
19
. In Fig 4 we show a comparison between the meas-

ured magnetic signal and the prediction of Eq (17), and we

see that in general the comparison is rather encouraging.

However, two features are evident: (1) at the beginning of

the trace, we see that the mode is initiated at finite ampli-

tude, suggesting that a threshold ~1cm needs to be exceed-

ed for island growth, and (2) the fit is not so good when

the island starts to decay. Both of these point towards a

Fig. 5. Tracking the island evolution as the heating pow-
er is reduced on JET, we see that inclusion of either of
the threshold effects improves the agreement with the
measured amplitude of the magnetic perturbation, B
(from Ref 20)

Fig. 4: Trace comparing the experimentally determined
island width in TFTR with the result obtained by inte-
grating Eq (17); ‘NBI’ indicates the time for which neu-
tral beam injection heating was applied [Reprinted with
permission from Z Chang et al, Phys Rev Lett 74 4663
(1995). Copyright (1995) by the American Physical So-
ciety.].
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threshold mechanism which is important for small island

widths, but has little influence on the evolution of larger

islands. Indeed, this is a property of both of the threshold

effects we have discussed above. Careful experiments on

JET have shown that the agreement between the data and

experiment is much better when the threshold effects are

taken into account
20
, and this can be seen in Fig 5, where

the predicted evolution is plotted (1) neglecting threshold

effects, (2) including only the transport effect and (3) in-

cluding only the polarisation effect. Recent high resolution

temperature profile measurements in the vicinity of NTMs

on MAST indicate that the transport effects are likely to

play a role in the threshold physics
21
.

The theory we have described suggests that very

small islands cannot grow (at least if '<0); ie, island

growth cannot occur unless an initial ‘seed’ island is gen-

erated by some other mechanism to excite it above the

threshold. This does indeed seem to be the case experi-

mentally, and in many cases NTM growth follows imme-

diately after a sawtooth crash
22,23,24

. One model is that the

sawtooth is predominantly an instability associated with

the q=1 surface, but that as this instability grows, it induc-

es magnetic island chains at other rational surfaces through

toroidal coupling, for example. If these so-called ‘side-

band’ islands exceed the thresholds for NTM growth, then

as the sawtooth crash occurs, and the associated q=1 insta-

bility disappears, the NTM is free to grow. Other types of

instability have also been observed to seed NTMs
24
.

Experiments have probed the conditions for NTM

onset rather deeply
21,25,26

. In particular, roles have been

deduced for both collisionality and * (which is the ratio of

ion Larmor radius to minor radius). While there seems no

general consensus between the different devices for the

dependence on collisionality, it is generally observed that

NTMs are only observed at lower values of collisionality.

One feature of the polarisation threshold model is that it is

a much stronger effect at higher collisionality (through

g( , i)), and the transport model can also provide a colli-

sionality dependence. In addition, experiments on

ASDEX-Upgrade seemed to confirm a role for * in the

threshold
25
, as predicted by the polarisation model, but

could also originate from the transport model if one adopts

a gyro-Bohm scaling for the perpendicular diffusivity (see

Eq(23)). A particular concern for ITER is that a multi-

machine database appears to indicate that the threshold

is linearly proportional to *, a parameter which is rather

small on ITER
20,26
. On the other hand, there is also some

evidence that the seed island size reduces as * gets small-

er
26
, and then whether or not NTMs will be an issue on

ITER will depend on which gets smaller faster: the thresh-

old, or the seed islands from the sawteeth. So far we do not

have sufficiently accurate data in the correct regimes to be

confident in the predictions, and therefore it is prudent to

assume NTMs will be an issue for ITER, and we must

guard against them.

The key to avoiding or controlling NTMs is current

drive. One can envisage two schemes: (1) to reduce the

free energy available in the equilibrium current profile so

that ' becomes more negative, and (2) to drive current

directly at the island O-point (to replace the missing boot-

strap current). Both of these have been tried, with success.

In COMPASS-D, radio-frequency waves in the lower hy-

brid frequency range have been used to drive current close

to the rational surface where the island forms
23
. In these

experiments, the radial width of the current deposition was

typically much wider than the island width, and then it can

be shown that there is little contribution to the right hand

side of Eq (10). However, calculations of ' showed that

the additional current that was being driven by the lower

hybrid waves did make ' more negative, and then both

expressions (26) and (27) predict that the threshold for

NTMs is increased. Fig 6 shows the experimental results.

The second technique is to drive current directly at

the island O-point, highly localised within the magnetic

island. Here the stabilisation is achieved through an addi-

tional contribution to J|| on the right hand side of Eq (10).

This has been achieved using radio-frequency waves at the

electron-cyclotron resonance, which drives current in a

much narrower radial region than the lower hybrid waves

used on COMPASS-D. In particular, successful experi-

ments have been performed on ASDEX-Upgrade
24
and

DIII-D
25
, and this is the method envisaged for ITER.

160 180 200 220 240 260

time (ms)

Fig. 6. The magnetic signal ( B) shows the growth of a
NTM on COMPASS-D after 190ms, with a correspond-
ing saturation in . 90kW of lower hybrid power (PLH)
is switched on just after 200ms, the NTM decays, and
again rises.

B (a.u.)

PLH (kW)
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V. SUMMARY

In summary, understanding the physics of the NTM is one

of the success stories of fusion. The instability was pre-

dicted 10 years before it was identified experimentally,

and since then theories have been refined, and broadly

confirmed, by more detailed experiments. Nevertheless,

the theory is still some way short of being truly predictive:

it needs to address the seed island formation, as well as

provide more accurate, quantitative models of the thresh-

old effects, both of which require improved models to de-

scribe the relevant situation when the island width is com-

parable to the ion banana width. This will inevitably re-

quire the development of large scale numerical models for

the situation. The neoclassical tearing mode is likely to be

an issue for ITER, but the prospects for controlling them

using radio-frequency waves to drive current close to the

rational surface, or perhaps by controlling the seeding

mechanism
26
, look promising. This remains an evolving

topic of research, both theoretically and experimentally.
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