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ABSTRACT

These lecture notes provide a short overview of
classical and neoclassical transport in tokamaks. The
classical theory is widely applicable in laboratory and
space plasma physics if the mean free path is shorter
than the macroscopic scale length. The neoclassical the-
ory predicts important phenomena in tokamaks such as
the bootstrap current, electric conductivity, transport in
the scrape-off layer, and cross-field transport in regions
where the turbulence is suppressed.

I. INTRODUCTION

After Boltzmann had formulated his famous kinetic
equation for dilute gases in the 1870’s, an outstanding
problem in theoretical physics was to calculate trans-
port coefficients (heat conductivity and viscosity) from
it. This problem remained open for over four decades
until Chapman [1] and Enskog [2] independently found
the correct asymptotic expansion. The extension of
their technique to ionised gases is referred to as clas-
sical or neoclassical theory, depending on whether the
geometry of the magnetic field plays a role. In either
case, it is a rigorous theory, meaning that it provides
an asymptotic solution of the kinetic equation
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for each species a, under the assumption that the gy-
roradius parameter 6 = p,/L is small, where p, is the
gyroradius and L the macroscopic scale length. In clas-
sical transport theory, it is assumed that the collisional
mean free path A is short, A/L < 1, whilst in neo-
classical theory X is arbitrary. The extension to long
mean free path is possible because a transport ordering
is adopted, meaning that the time derivative is consid-
ered small,

8/t ~ 62vrq/L,

where v, = (2T,/m4)"/? is the thermal speed. This
ordering removes plasma waves from the equations.
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There is one final assumption concerning the magni-
tude of the electric field. This can either be ordered
large,

E/B ~ UTa,

or small,
E/B ~ &UTaa

and the resulting theory is somewhat different in the
two cases. Most commonly, the first ordering is adopted
in the classical theory and the second one in the neo-
classical theory.

II. FLUID EQUATIONS

As is well known, the moments of (1) express the
conservation of density, momentum and energy,
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and it is the task of the kinetic theory to calculate the
friction force

F, = /mavC’a(fa)dSv,
the pressure tensor
II, = /mavvfa d3v,
the energy flux
1 2 3
Q, = imav v f,dv,

and the collisional energy exchange on the right-hand
side of (4). The viscosity tensor is defined as

Ty = Ha - paI - manaVan




where I is the unit tensor, and the heat flux is
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The collision operator
Ca :ZCab(fa7fb) (5)

is a sum of contributions from collisions with each par-
ticle species “b”, including b = a. Its detailed form will
be of little concern to us, but it is important to know
that it conserves particles,

/Cab(fm fb) d*v =

which has been used in the derivation of the continuity
equation (2), as well as momentum and energy,

/maVCab(faafb) d3U: _/mbvcba(fbvfa) dgv, (6)
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It will also be useful to know that the operator contains
pitch-angle scattering,

a part of Cop(fa) = vanL(fa),

where the scattering frequency v, is of the order of
the inverse collision time, and the scattering operator
is defined by

0
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with £ = v) /v.

ITI. CLASSICAL TRANSPORT THEORY

This theory was developed independently by sev-
eral authors, but the most well-known and pedagogic
formulation is due to Braginskii [3]. It considers a
plasma with a single ion species ¢, but can straightfor-
wardly be extended to multiple ion species, and assumes
the large-flow ordering, E/B ~ vp;. It is remarkable
that the complete theory for the small-flow case was
only worked out only half a century after Braginskii’s
original work [4].

ITI.A. Chapman-Enskog expansion procedure
Since the flow is considered large, the first step is

to transform the kinetic equation (1) to a coordinate
frame moving with the flow velocity V,(r,t)

dfa e dVa| 0fa
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where v/, = v -V, E = E + V, x B is the electric
field measured in the moving frame, and
d 0

= Ca(fa),

is the convective derivative. The largest terms are
those involving the collision operator and the mag-
netic field, and the equation can be solved perturba-
tively by expanding the distribution function accord-
ingly, fo = fao + fa1 +.... In lowest order, the large
terms force the electron (e, = —e) distribution function
to be a Maxwellian at rest in the moving frame,

m 3/2 2
feO:ne (27TT6> € ;

where 22 = m.v/?/2T,. In the next order, we obtain an
equation for the correction f.; to the Maxwellian
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where we have now written v instead of v/ and where
u = V., — V; is the mean velocity of the electrons rel-
ative to the ions. CY (fe1) = veil(fe1) denotes the
scattering part of the electron-ion collision operator.

A crucial insight by Chapman and Enskog was that
the time derivatives on the right-hand side can be elim-
inated by taking moments of the equation. Indeed, in-
tegrating Eq (9) over velocity space gives the continu-
ity equation (2), which implies that dlnn./dt can be
replaced by —V - V.. The m,v-moment gives the mo-
mentum equation (3), but without the viscosity term,
and can be used to eliminate dV./dt and E’ by

dV. eE'" F.—V(n.UT,)
+—=—".
dt Me MeNe

The energy moment, finally, gives the energy equation
(4), but without heat conduction and energy exchange,

§dlnTe
2 dt

+V-V, =

and this can be used to eliminate dT. /dt in Eq (9). The
reason why certain terms in the full fluid equations (2)-
(4) do not appear in the moments of Eq (9) is that




they are small in the ordering assumed. Eliminating
time derivatives from Eq (9) in this manner gives the
following kinetic equation for f.; in the electron rest
frame,
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is the so-called rate-of-strain tensor. Note that there
are three driving terms on the right: the temperature
gradient, the term involving the friciton force, and the
tensor W;;, which measures how rapidly the flow veloc-
ity varies in space and gives rise to plasma viscosity.
The ion analysis is slightly simpler since the ion-
electron collision operator can be regarded as small,
which implies that the friction is negligible in the ion
kinetic problem. The analogue of (10) for ions is thus
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The equations (10) and (12) are linear, integrodif-
ferential equations involving the complicated (but lin-
earised) Coulomb collision operator. They are tradi-
tionally solved by expanding the distribution function
in a suitable set of orthogonal functions, which converts
the problem to an infinite set of coupled linear algebraic
equations. A sufficiently accurate solution can be found
by truncating this system of equations after only a few
terms.

II1.B. Results

Following Braginskii, we display the results in the
limit p/A = 1/Q7e — 0, which is the most interest-
ing case for most situations in fusion and astrophysics.
Here Q. = —eB/m, is the electron gyrofrequency and

o 1273/2 M 13?2
¢ 21/2 n;Z2e4ln A

the electron collision time, with Z = 1 the ion charge
and In A the Coulomb logarithm.

The force F. acting on the electrons consists of a
drag force and a thermal force

F.=F,+Fr, (13)
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Fr = —0.71n.V T, + ;Z%b xVT., (15)
where u = V., — V; and b = B/B. Because of mo-
mentum conservation the force acting on the ions is
equal and opposite, F; = —F.. The parallel friction
coefficient in Eq (14) is seen to be smaller than the
perpendicular one by a factor of 0.51, which has to do
with the fact that the collision frequency decreases with
velocity, (7. ~ v?), causing electrons with large paral-
lel velocities to be more distorted from the Maxwellian
distribution than slower ones. The fast electrons then
contribute more to the relative velocity, and less to the
friction. The parallel thermal force (15) is also a conse-
quence of the circumstance that the collision frequency
falls off with increasing energy, for consider a situation
where the electron fluid is at rest with respect to the
ion fluid, so that the drag force F, vanishes. A typi-
cal ion is bombarded by electrons streaming along the
field with their respective peculiar velocities. If there is
a temperature gradient along the field, those electrons
that travel in the direction of the temperature gradient
come from a slightly colder region and will be more col-
lisional than those going in the opposite direction. They
will therefore exert a larger friction force on the ions,
on which a thermal force therefore acts in the direction
of V| T,. The corresponding force on the electrons (15)
is in the opposite dirction. The second term is smaller
than the first one by a factor of 1/Q.7. < 1.

The electron heat flux also has two pieces

qe = q;, + 97, (16)
3neT,
a;, = 0.7In.Touy = 5a=*b xuL, (17)

q% = —}QﬁVHTe — K?\b X VTE — KEVJ_T(—;W (18)

where the heat conductivities are
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Physically, the first term in Eq. (17) has to do with
the distortion of the distribution of fast electrons from
a Maxwellian. In a coordinate system where V., = 0,
more fast electrons travel in the direction of u and more
slow electrons in the direction of —u, which gives rise
to a heat flux.




This effect does not arise for ions since the ion-
electron collision frequency is independent of ion en-
ergy. The ion heat flux therefore only has terms related
to VTZ‘,

where T
Wi =391 (23)
m;
on;T;
= 24
fn = o (24)
i TLZTZ
K| = QmiQ?Ti (25)

with Q; = ZeB/m; and
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Note that the conductivities s, ko and k1 are con-
secutively separated by the large factor Q7 for both
species. The first and third terms in the expressions for
a7 and q; are parallel to the gradients that drive them,
and will therefore tend to relax these gradients. This
relaxation occurs on very disparate time scales in the
two directions. Perpendicular to the magnetic field, the
ion contribution is dominant, since for both species the
cross-field diffusion scales according as k| ~ np?/7;, in-
dicating a random walk with the step size p;, which is
much larger for the ions than for the electrons. Parallel
to the field, on the other hand, the electron heat flux
dominates, and scales as r ~ nA? /7. with a random-
walk step size equal to the mean free path. The latter
is roughly the same for electrons and ions, but the col-
lision time is much shorter for the electrons. Of inter-
mediate magnitude is the diamagnetic heat flux term
qn = rAb X VT, carrying heat across the field per-
pendicular to the gradient. This flux is not affected by
collisions in the limit Q;7; > 1.
The heat exchanged between the species,

m;v Z 3neme
/ —Ci(fi)d o ——(T.—T;), (26)
is a result of temperature equilibration on the slow time
scale m;7./m. and frictional generation of heat. The
viscosity tensor is complicated and will not be treated
here. Its form depends on whether the large- or small-
flow ordering is adopted.

ITI1.C. Applications

As already remarked, classical transport is rela-
tively small across the magnetic field and is therefore
usually of little concern. In most situations it is eas-
ily overwhelmed by neoclassical or turbulent transport.
Along the field, however, the classical transport is very
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rapid and usually dominates over turbulence. The most
important prediction of the classical theory is probably
the electric (so-called Spitzer) conductivity, o regulat-
ing the current

JH = —neeuH = JEH,

that arises in response to an applied parallel electric
field [5]. It is obtained from (14) as

2
o=1.96 T

Me

and is thus proportional to T 7 put independent of the
density ne.

The parallel electron heat conductivity (19) is very
important in the tokamak edge, where it governs the
heat flux to the divertor plates. This condutivity is
proportional to 0 /2 but is independent of density. In
situations where the heat flux is constant, it predicts a
temperature profile T, (s) ~ s2/7 as a function of the arc
length s along the magnetic field. Parallel electron heat
conduction is also important in space physics and as-
trophyiscs. It governs, for instance, the heat flux along
magnetic loops in the solar corona.

The thermal force, which was discovered by Enskog
(then a student) in 1911, has been used for isotope sep-
aration and plays an important role in plasmas with
multiple ion species. The point is that the kinetic equa-
tion for hydrogenic ions in a plasma that also contains
much heavier impurity ions is identical to the equa-
tion for electrons in a pure plasma (with the lighter
ions playing the role of the electrons in a pure plasma).
Many of Braginskii’s results therefore carry over to the
situation of an impure plasma and, in particular, there
is a thermal force on heavy impurity ions in the direc-
tion of V| T;. This force pulls impurity ions out of the
divertor into the main scrape-off-layer in a tokamak. In
the transition region between the solar photosphere and
the corona, there is a very strong vertical temperature
gradient pulling out heavy ions and making the chemi-
cal composition of the solar wind different from that of
the Sun.

IV. NEOCLASSICAL TRANSPORT

Classical transport applies in all magnetic-field ge-
ometries as long as the mean free path is short. When
it is, the transport is determined locally and does there-
fore not depend much on the macroscopic field struc-
ture. When the mean free path is long, however, the
transport can become much stronger, which is the sub-
ject of neoclassical theory.

IV.A. Collisionality




The physics of neoclassical transport in a tokamak
depends decisively on the relative magnitude of the
collision frequency v and the transit frequency w; =
vr/qR, the so-called collisionality. Here ¢ = rB,/RBy
is the safety factor and R the major radius of the toka-
mak. We note that the mean free path A = vp/v is
similar for electrons and ions since Vee/Vi; ~ vre/vri,
but may differ among ion species with very disparate
masses. Highly charged impurities are more collisional
than bulk ions and electrons. If the collisionality is
large, .

v

P UT/qR>>1’ (27)
the mean free path is shorter than the parallel distance
around a flux surface L ~ ¢R, and the Braginskii fluid
equations may be applied for the analysis. The particle
orbits are then not fully completed by a typical thermal
particle since its motion is disturbed by collisions before
an orbit has been completed. This high-collisionality
regime is called the Pfirsch-Schliiter regime.

In the opposite limit,

UT/ qR <1
referred to as the banana-plateau regime, orbits are
completed and short-mean-free-path closure of the fluid
equations is inapplicable. The core of a tokamak is usu-
ally in this regime.

If the inverse aspect ratio is small, ¢ < 1, the
banana-plateau regime is subdivided into two regimes:
the plateau regime

3/2 v
€K <1, 28
vr/aR (28)
and the banana regime
v 3/2
L€', 29
vrJaR (29)

In the former, most circulating particle orbits are com-
pleted but trapped orbits are interrupted by collisions
since the effective collision frequency, veg = v/e, re-
quired to scatter a trapped particle out of its magnetic
well, AB/B ~ e, is larger than the bounce frequency

wp ~ Vevr/qR, i.e.,

3/2
Uy = V—/e = v/e > 1.
wh vr/qR

It is important to note that the effective collision fre-
quency for scattering the velocity vector by an angle
A9 is v/(AD)?, since the pitch-angle scattering opera-
tor (8) is of second order. Trapped particles occupy the
region v /v ~ /€ in velocity space, so it is appropriate
to take AY = y/e. The effective trapped-particle scat-
tering frequency is thus substantially greater than v if
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€ < 1. Finally, in the banana regime, v, < 1, the par-
ticle dynamics is virtually collisionless, and both types
of orbits (trapped and circulating) can be completed.

The diffusivity of particles and heat is proportional
to the collision frequency in the banana and Pfirsch-
Schliiter regimes (with different proportionality con-
stants) but is independent of collisionality (forms a
“plateau”) in the plateau regime, see Fig 1. While this
is strictly true in the limit ¢ — 0, at realistic aspect
ratios the distinction between the regimes is blurred,
and the plateau is difficult to discern.

1 ~e3

Vs

Figure 1: Dependence of neoclassical diffusion coeffi-
cient on collisionality at large aspect ratio. The dashed
curve represents the asymptotic limit e — 0, while the
solid curve represents € = 0.2.

IV.B. Flows within the flux surface

The axisymmetric magnetic field of a tokamak has
the form

B=1(¥)Vo+ Vi x Vi,

where ¢ is the toroidal angle measured in the direction
of the plasma current and v the poloidal flux function.
Since the pressure

p= Zpa = ZnaTa

is a flux function when the rotation velocity is subsonic
so that J x B = Vp, the diamagnetic current beomes

_BxVp [(IB .\ dp
JJ‘_BZ_<B2 R‘P)W

and is generally not divergence-free, V - J | # 0, neces-
sitating a parallel, so-called Pfirsch-Schliiter, current.
Since

_ /B _ Jy L dp




it follows that the quantity within the parentheses must
be constant of flux surfaces, and the parallel current
becomes Id
p
Ji=-gg; tKWB

where K (1)) is an arbitrary integration constant. This
is the “return current” necessary to close the diamag-
netic current. A similar argument can be made for the
flux n,V, for each species: its perpendicular compo-
nent is given by the diamagnetic flux but is not diver-
gence free, necessitating a parallel flux. The sum is
equal to

naVa = wa(¥)na (V) R + Ka(¢)B, (30)

with 4D L 4
__® @Pa
wa(/lz[}) - dw Nuq dw 9

where ® denotes the electrostatic potential. These re-
lations hold in all collsionality regimes.

(31)

V. PFIRSCH-SCHLUTER TRANSPORT

In the Pfirsch-Schliiter regime, the transport can
mostly be calculated using Braginskii’s equations. Al-
though these do not depend on the geometry of the
magnetic field, there is nevertheless an enhancement of
the transport level in the tokamak as compared with a
plasma in a straight magnetic field. On the fluid level,
it has to do with the fact that a parallel Pfirsch-Schliiter
flow must arise, as we have just seen. In the particle
picture, the transport enhancement can be understood
in terms of a simple random-walk argument.

Since the collision frequency exceeds the transit fre-
quency, parallel particle motion is diffusive, with a dif-
fusion coefficient

Dy~ N /1 ~ i/,

where A = vr /v is the mean-free path. Thus, the time
it takes for a particle to move around a flux surface is

of the order
2 2
s O (12)
Dy vr

since the parallel distance is of the order gR. The cross-
field transport is caused by the guiding-centre drift,

V2 + vﬁ
2QR

Vg X~ — 27

which is vertical and therefore directed radially outward
(say) if the particle is above the midplane and inward
if it is below the midplane. As the particle diffuses in
the parallel direction, the cross-field drift is sometimes
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outward and sometimes inward. This leads to a random
walk in the radial direction, with a step length

v At
ArwvdAthE ,

and a step time At. The resulting diffusion coefficient
is thus

Ar)?
~ (At) ~vg?p?, (32)

which is larger than the classical diffusion coefficient by
a factor ¢2.

To derive the transport mathematically using the
results from Section III.B, we consider the ion heat
flux. When the plasma flow velocity is ordered small,
E/B ~ dvr;, the ion energy equation (4) reduces to
V-q; = 0. Recalling (22), we see that if we expand the
temperature,

D,

Ti=To+Ta+...,

in powers of 1/Q;7, then in lowest order,
V”(KﬁVHTiQ) =0, so

Tio = Tio ().
Thus, on the fastest time scale parallel heat conduction
makes the temperature uniform on flux surfaces. In
next order, we have
V- (HT‘VHTZM — Hi\b X Viﬂo) = 0,

so that

where the integration constant L;(v) can be determined
from the relation <BVHTZ-1> = 0. Here the angular
brackets denote the so-called flux-surface average,

Q,0) do/ j{
B-Vo B-Vo
i.e., a volume average of the quantity ) between two

neighbouring flux surfaces. Since k% B is constant over
the flux surface, it follows that

I,‘{ 32 deO
VT = - =) ==,
= H (1 <B2> ) dy (33)

(@) () =

We see that T;; varies over the flux surface. The mech-
anism is the same as that giving rise to the Pfirsch-
Schliiter current. The diamagnetic heat flux x4 bx Vg
is not divergence free, and must therefore be balanced
by a parallel return flow, which, in turn, implies a small
but important parallel temperature gradient. Since the
latter (33) is positive on the inside of the torus and neg-
ative on the inside (assuming that dT;/dy < 0), the




temperature is up-down asymmetric. It is now straight-
forward to construct the heat flux across the flux surface
from (22) and (33),

GV = (~RL V1T + kb x VTi) - V)

oy U (B
il + G- (1- 1)

dT;o
dip
The first term is the classical cross-field heat flux, and
the second term is the neoclassical Pfirsch-Schliiter heat
flux, which arises entirely because of toroidicity. Both
heat fluxes are ultimately driven by the radial temper-
ature gradient, but the neoclassical heat flux is also
fundamentally associated with a parallel gradient. In a
large-aspect-ratio tokamak with circular cross section,
the total flux-surface averaged heat flux becomes
(q; - V¢) i 2y dT5o
= ———-=—kr" (14+1.6 ,
Gir |vw| 1 ( q ) dr

where the first term is the classical and the second term
the Pfirsch-Schliiter contribution.

(34)

VI. TRANSPORT IN THE BANANA REGIME

When the mean free path is longer, the transport
must be calculated kinetically, but since the gyroradius
is supposed to be small, the full kinetic equation (1)
can be reduced (by gyro-averaging) to the drift kinetic
equation,

% + (b +Vaa) - Via=Calfa), (35

where vg is the drift velocity and the derivatives are
taken at constant energy H = m,v?/2 + e,® and mag-
netic moment p = m,v? /2B, so that the mirror force
is contained in the parallel steaming term vV f,. In
this equation, not all terms are equally large. As men-
tioned in the introduction, the first term on the left is
ordered to be a factor §2 smaller than the second one,
and the magnetic drift term is by definition a factor
0 smaller than parallel streaming, vy/v ~ 6. We may
thus expand f, = fu0 + fa1 + -+ - and obtain

vV fao = Ca(fao),
OV far + Vda - V fao = Ca(fa1),

in zeroth and first order, respectively. It can relatively
easily be shown that the only solutions of the first equa-
tions are Maxwellians that are constant on flux sur-
faces. This conclusion is reached by multiplying the
equation by In f,q, integrating over velocity space, tak-
ing the flux-surface average, and using Boltzmann’s H-
theorem. It also follows from this argument that the
electrostatic potential is approximately a flux function,

P = @o(¢) + P1(4,0),
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If an inductive electric field, E)(A4) = —0A) /0t is
added to Eq (35), our remaining task is thus to solve
the first-order equation

Ofa v B”
’UHvaal - Oa(fal) = _(Vd ’ V¢) 8’(/J + T,

fa0~

Since this equation is linear in f,; and the driving terms
on the right appear additively, we conclude that the ra-
dial density and temperature gradients in f,o and the
inductive electric field contribute separate and indepen-
dent terms to f,1. In this equation no assumption has
yet been made about collisionality, i.e., on the relative
magnitude of the terms on the left. If the equation is
solved under the assmption that the collision term dom-
intates, then Pfirsch-Schliiter transport is recovered. If
the first term instead dominates, banana transport en-
sues. Mathematically, one makes a subsidiary expan-
sion of f,1 in the smallness of the collision frequency,

fa =9+ 10+

which enables the equation to be solved analytically if
the collision operator is simplified. The mathematics is
somehwat complicated and will not be repeated here.
The student who is interested in all the steps is encour-
aged to consult Ref [6].

VI.A. Radial transport

From the distribution funciton f,; thus obtained,
the radial particle and heat heat flux can be calculated.
The results have been obtained in general axisymmetric
geometry but are particularly simple in the case of a
large-aspect-ratio tokamak with circular cross section.
The largest flux is that of ion heat,

= v
Qir iXi ar’

whose diffusivity is

1.35¢> T;

Xi = G (36)
and thus scales as the classical diffusivity p?/7; en-
hanced by the factor 1.35¢2/ €3/2 which is usually in
the range 10-100. The reason for this enhancement has
to do with banana orbits. As already mentioned, par-
ticles with velocity vectors nearly perpendicular to the
magnetic field, |v|/ve < €!/2, are trapped in the rela-
tively weak magnetic field on the outside of the torus
and trace out banana orbits with a width

6Tb ~ qp/ﬁ,

cf Fig 2. The banana width dr;, is thus considerably




Figure 2: Banana orbit in a tokamak.

larger than the gyroradius, indicating a large random-
walk step size for these particles. The diffusivity (36)
is of order

Xi ~ [i(AT)?Vegr.
2

where the trapped fraction of the particles f; ~ €'/2 is
small, but the step size Ax ~ Jrp is large, and so is the
effective collision frequency veg ~ /€ of events causing
a trapped ion to take a step of order dry.

The electron heat flux is also enhanced by a similar
factor over the classical result, but is insignificant as it
is smaller than the corresponding ion flux by a factor
(me/m;)Y/2. The ion and electron particle fluxes are
equal (ambipolarity) and are both on the level of the
electron heat flux. The only neoclassical cross-field flux
that is experimentally relevant is thus the ion heat flux.
Even this flux is usually overwhelmed by the turbulent
transport, but can be of importance in spherical toka-
maks and in transport barriers. The H-mode pedestal
seems to exhibit neoclassical ion energy confinement.

VI.B. Toroidal current

The parallel current is very well described by neo-
classical theory, which predicts two important effects:
a reduction in the conductivity due to trapped parti-
cles and the existence of the so-called boostrap current.
Both are of great experimental significance. When the
drift kinetic equation is solved for f;; and f.1, and the
parallel current is calculated, one finds

ftqneTe Tz dln e
= 2ete 1166 (1 + —
d eB 66 {1+ T dr

dinT, 0.29dT;
dr T, dr

for a large-aspect-ratio tokamak with circular cross sec-
tion. The quantity f; ~ 1.46€'/2 denotes the “effective”
fraction of trapped particles and appears in two places.
It multiplies the entire first term, which constitutes the
bootstrap current — a toroidal current that arises thanks

+0.47

} +(1 - 1.31f)o B,
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to density and temperature gradients in the plasma. It
also appears in the second term as a reduction of the
Spitzer conductivity o caused by the fact that trapped
particles cannot contribute to the parallel current.

Physically, the bootstrap current has its root in
a diamagnetic effect of the banana orbits. Because
of their width &7, ~ gp/€e’/?, the co-current-moving,
trapped population on a given flux surface is larger than
the counter-moving one by an amount

dn
€ . Tb,

where €'/2 is the approximate fraction of trapped parti-
cles. These are in collisional equilibrium with the pass-
ing ones, whose co-passing population therefore exceeds
the counter-passing one by

——0rp.
dr "o

The resulting current is of the order

7 dn 5 qT, dn,

~ —Upee——O0Tp ~ — e ——.
Bs R €l/2B dr
Thus, at large aspect ratio the bootstrap current is
mostly carried by the passing particles, although it is ul-
timately caused by the diamagnetic effect of the trapped
ones.

The bootstrap current is thus of order

€l/2p
rB,’

JBs ~

where B, = eB/q is the poloidal field, and compares in
the following way with the Ohmic current,

Jps/Jow ~ €/*B,,

where 3, = 2uop/ B} is the poloidal beta. In the stan-
dard tokamak ordering 3 ~ €2 = Bp ~ 1, the bootstrap
current is thus formally smaller than the Ohmic current
by a factor €!/2. In practice, 3 and €!/? are sometimes
not very small, and the bootstrap current is often com-
parable to, or even larger than, the Ohmic current. It
is of great importance for the prospects of the tokamak
to be an economic power source.

VI.C. Plasma rotation

We have already shown that the flow within the
flux surface of each species is given by Eq (30), where
the constant K, must be calculated from kinetic theory.
For ions this constant determines the poloidal plasma
rotation, which is equal to

1.17 dT;

‘/i =
o lez dr




for a circular, large-aspect-ratio tokamak in the banana
regime. Contrary to widespread belief, the poloidal ro-
tation is independent of the radial electric field. In fact,
this field only plays a minor role in neoclassical theory
for axisymmetric plasmas. In the quasi-steady state
described by the transport ordering, it does not affect
cross-field transport or poloidal rotation. The only ob-
servable quantity where it shows up is the toroidal rota-
tion frequency (31), where it appears in the same way
for all species. Of course, there is a good reason for
this. Suppose that we make a transformation from the
laboratory frame to a frame rotating at the velocity
. d®g
V=—-¢R @
of some flux surface . The electric field measured in
this frame vanishes on the flux surface in question since

E=E+VxB~-V®+VxB=0,

and the equation of motion for each species acquires
new terms corresponding to the centrifugal force and
the Coriolis force. These terms are, however, small if
V is smaller than the thermal speed, in which case the
only consequence of the coordinate transformation is to
eliminate the radial electric field. Thus, as long as the
flow velocity is small, the radial electric field cannot
affect neoclassical transport.

For this reason, the transport in a tokamak is in-
trinsically ambipolar, i.e., the radial electron and ion
particle fluxes are always the same, regardless of the
radial electric field, as long as the transport ordering
is satisfied. The toroidal rotation frequency (31) can
therefore attain any value: the plasma rotates freely in
the toroidal direction. The situation is very different in
non-axisymmetric systems such as stellarators, where
ambipolarity is only attained at a certain value of the
radial electric field. A stellarator plasma cannot rotate
freely [7].

VII. DISCUSSION

Not only the neoclassical theory, but most of the
theory of magnetically confined plasmas relies on an ex-
pansion in § < 1, and one can thus distinguish between
plasma physics phenomena according to the order in
which they first appear in the expansion. In zeroth
order one finds, among other things, that the distribu-
tion function of each species must be Maxwellian, that
flux surfaces should be isothermal, that an axisymmet-
ric plasma is free to rotate toroidally, that its equil-
brium and stability properties are predicted by MHD,
and that the parallel electric conductivity is given by
the Spitzer value with a reduction due to particle trap-
ping. In first order, the bootstrap current and neo-
classical poloidal rotation appear, and in second order
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there is radial transport — either caused by collisions as
in the neoclassical theory or by gyrokinetic turbulence.
It is interesting to note that the robustness of the the-
oretical predictions decreases with increasing order in
the expansion. The zeroth-order predictions are very
robust in the sense that they are hardly affected by
turbulence and are very well borne out in experiments.
The first-order results are also broadly in line with ob-
servations, whilst the cross-field transport, which is of
second order, is famously difficult to predict with con-
fidence. The neoclassial cross-field transprort is usu-
ally overwhelmed by turbulent transport, but this is
(in gyrokinetics) also of second order in the gyroradius
and therefore sensitive to details in the mathematical
treatment and the physical conditions prevailing in the
plasma.

VIII. FURTHER READING

A more complete exposition can be found in the au-
thor’s book [6] and in the review by Hinton and Hazel-
tine [8]. Classical transport is very well described in
the reviews by Braginskii [3] and Hinton [9].
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