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ABSTRACT

This tutorial presents an introduction to the basic
concepts of plasma turbulence models based on fluid
theory. It is intended to elucidate basic features of
drift fluid theory and drift wave turbulence. The-
oretical methods widely used in tokamak transport
and turbulence modelling are discussed briefly.

I. INTRODUCTION

The phenomenon of plasma turbulence is still an ac-
tive field of research. It is accepted for years now that
the turbulent transport is the main candidate to ex-
plain the degradation of plasma confinement known
as the “anomalous” transport. Moreover, the the-
ory of turbulent dynamics caused by the interplay of
plasma transport and self-consistent electromagnetic
fields, provides an explanation for the intermittent
transport in the edge of tokamak plasmas, plasma
oscillations and operational regimes found in experi-
ments. In this tutorial we introduce a basic mathe-
matical framework to study this kind of processes.
Emphasis is put on illustrative examples of basic
mechanisms driving turbulent processes in a plasma,
e.g. linear instabilities, non-linear interaction and ge-
ometry effects. Of course, a comprehensive overview
on all relevant aspects of turbulent transport and all
varieties of theories would be too lengthy and confus-
ing for this tutorial. Therefore, details on the physics
of trapped particles, ITG and ETG modes [1], finite
Larmor radius effects and elaborated kinetic theo-
ries have not been taken into account. However, the
framework of fluid turbulence chosen here offers the
opportunity to introduce systematically several terms
and concepts relevant also for those methods and ap-
proaches not included here. The tutorial starts with
a reminder of two-fluid plasma theory. By the use of
the so-called drift approximation a very general set
of model equations is established widely used in sev-
eral variants in the literature to study a large number
of plasma transport phenomena. By picking out cer-
tain ingredients of the general model presented basic
processes like drift wave motion, drift wave coupling,
linear instabilities and turbulent interaction are in-
troduced. A second part is devoted to a discussion of

problems and details on the numerical simulation of
tokamak turbulence.

II. DRIFT FLUID MODELS

In this section the basic equations of fluid theory
of magnetized plasmas - known as Braginskii equa-
tions - are recapitulated. The problem of solving
the perpendicular momentum equation is moved to
the derivation of a vorticity equation to compute the
self-consistent electric field and therefore the perpen-
dicular velocity of the particles. It is shown that the
so-called drift waves represent an elementary ingredi-
ent of the plasma dynamics of this kind of drift fluid
model. In subsequent sections the possibility of lin-
ear instability drive due to resistivity and geometry
effects, non-linear interactions and zonal flow oscilla-
tions are discussed.

A. Fluid Models

We start with the general fluid equations for the par-
ticle, momentum and energy balance for each plasma
species [2, 3] neglecting external sources and sinks

dn

dt
= −n∇ ·V (1)

mn
dV

dt
= −∇ ·P+R+ Zen(E+V ×B) (2)

3

2
n
dT

dt
= −∇ · q−P : ∇V −Q (3)

where n denotes the density of the particular species,
V is the flow velocity and T the particular tempera-
ture. The pressure tensor is denoted by P, m is the
particle mass, Z is the charge number, q is the heat
flow and E and B are the electric and magnetic field
vectors, respectively. External sources for particle,
momentum and energy are neglected here. Finally
the quantity Q and the vector R denote the change
of thermal energy and the force due to Coulomb colli-
sions between the charged plasma particles. The total
time derivative is defined by d/dt=∂/∂t+V ·∇.

B. Drift Approximation

Using Eq. 2 one can write a formal solution for the
perpendicular velocity V⊥ as

V⊥ =
E×B

B2
+

B×∇p

ZenB2
+

m

ZeB2
B× dV

dt
(4)
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Here the pressure tensor is approximated by P=p1
and the perpendicular part of the friction R has been
neglected. The first term on the rhs of Eq. 4 defines
the E×B-velocity VE , the second the diamagnetic
drift V∗ and the third the polarization drift Vp. Ac-
tually, Eq. 4 can be considered as an iteration scheme
to find the perpendicular velocity V⊥. The iteration
usually starts with the assumption that in zeroth or-

der V
(0)
⊥ =VE + V∗. Inserting this into Eq. 4 again

gives in first order

V
(1)
⊥ = VE +V∗

+
m

ZeB2
B×

(
∂

∂t
+V

(1) ·∇
)

(VE +V∗)

(5)

where V
(1)=V‖ +V

(1)
⊥ denotes the total velocity of

first order and V‖ is the parallel velocity. Therefore,
in first order a relation results between the perpen-

dicular velocity V
(1)
⊥ and the temporal evolution of

the electric field Ė⊥=−∇⊥φ̇.

C. The Vorticity Equation

To compute the electric field an additional equation
is needed. This is found by employing the quasineu-
trality condition ne=ni≡n in the form

∇ · J = ∇ · (enu⊥ − env⊥) +∇‖J‖ = 0 (6)

with u⊥ determined by

u⊥ = VE + u∗

+
mi

eB2
B×

(
∂

∂t
+ u ·∇

)
(VE + u∗)

(7)

and the electron drift approximated by

v⊥ = VE + v∗ (8)

i. e. due to their small mass the electron polarisa-
tion drift is neglected. This provides an equation -
called vorticity equation or quasineutrality condition
- for the time evolution of the electric potential φ
and completes the model. Often the detailed vorticity
equation is very diffult to derive, but as an example
we will give an approximate expression widely used
and valid for the case of cold ions, i. e. Ti≈0

mi

eB2

∂∇2
⊥φ

∂t
+

mi

eB2

(
u‖ +VE

)
·∇∇2

⊥φ

=
∇‖J‖

e n
+

∇ · (nVE − nv⊥)

n

(9)

This expression suffers from certain shortages con-
cerning the energetic consistency of the entire model,
this point has been discussed for cylindrical geometry
in Ref. [4]. However, in practice, this is often a good
approximation if Ti≪Te. This form also explains the
name “vorticity equation”, because the vorticity is

given by ∇2
⊥φ=B ·∇×VE and is a measure for the

local spinning of particles due to E×B motion. The
vortices in plasmas are often called eddies. Now we
have an equation for the perpendicular electric field
E⊥=−∇⊥φ. For the parallel electric field it is as-
sumed that E‖=−∇‖φ − ∂A‖/∂t, where A‖ is the
magnetic potential, which is related to a parallel cur-
rent density via Ampére’s law µ0J‖=−∇2

⊥A‖. Insert-
ing the resulting drift velocities into the model equa-
tions Eqs. 1-3 and project the momentum equations
on the direction parallel to the magnetic field lines
leads to a set of model equations describing the tem-
poral evolution of density, parallel momentum and
temperatures. These are the particle conservation

∂n

∂t
+ v ·∇n = −n∇ · v , (10)

the conservation of parallel electron momentum
(Ohm’s law)

me n

(
∂v‖
∂t

+ v ·∇v‖

)
= −∇‖pe + e n η‖ J‖

−αn∇‖Te + e n∇‖φ+ e n
∂A‖

∂t
,

(11)

the conservation of parallel ion momentum

mi n

(
∂u‖

∂t
+ u ·∇u‖

)
= −∇‖pi − e n η‖ J‖

+αn∇‖Te − e n∇‖φ− e n
∂A‖

∂t
,

(12)

the heat transfer of electrons

3

2
n

(
∂Te

∂t
+ v ·∇Te

)
= −∇ · qe

−nTe∇ · v − α
J‖

e
∇‖Te + η‖ J

2
‖ ,

(13)

and the heat transfer of ions

3

2
n

(
∂Ti

∂t
+ u ·∇Ti

)
= −∇ · qi

−nTi∇ · u ,

(14)

where qe is the electron heat flux

qe = −αTe J‖/e+ κe
‖ ∇‖Te − κe

⊥ ∇⊥Te (15)

and qi is the ion heat flux

qi = κi
‖ ∇‖Ti − κi

⊥ ∇⊥Ti (16)

and κ‖ and κ⊥ denote the classical heat conduc-
tivities. The thermal force coefficient is set to
α=0.71 [2, 3] and the parallel current density is de-
fined by J‖=en

(
u‖ − v‖

)
. The parallel derivative is

defined by ∇‖=b·∇, where B=B b denotes the to-
tal magnetic field (equilibrium field + fluctuations).
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This forms the basis for the following discussions.
Even though several physical effects are still miss-
ing (trapped particles, radiation, neutral physics etc.)
this model contains a rich variety of physics such as
the dynamics of drift waves, tearing modes, drift-
Alfvén waves, ITG modes, sound waves, drift resis-
tive ballooning modes etc. and it has been used as
a starting point to study turbulent and intermittent
plasma transport in the scrape-off-layer, the edge and
the core plasma as well.

D. Drift Waves

To get an idea of the nature of drift waves we con-
sider a subset of the model equations Eqs. 9-14 in
cylindrical geometry. The cylinder geometry is not a
severe restriction for the particular effects discussed
here. We inspect the physical processes described by

∂n

∂t
+VE ·∇n = 0 (17)

Te∇‖n

e n
−∇‖φ = 0 (18)

This means that the particles are advected by the
E×B-velocity and Ohm’s law is reduced to a simple
force balance between electron pressure and parallel
electrostatic field. The temperature Te is assumed
to be constant and it follows n=n0 exp (eφ/Te) along
the magnetic field line. To study the interplay of
a poloidal perturbation of mode number m and the
symmetric profiles (“background”) we split the den-
sity n and the electric potential φ according to

n = n0(r) + nm(r) eimθ + n∗
m(r) e−imθ (19)

φ = φm(r) eimθ + φ∗
m(r) e−imθ (20)

This gives the evolution equations

∂n0

∂t
=

2m

rB

∂

∂r
(Im {nm φ∗

m}) (21)

∂nm

∂t
=

im

rB

∂n0

∂r
φm (22)

According to nm=e n0 φm/Te the last equation gives

nm(t) = nm(0) exp

(
i
m

rB

Te

en0

∂n0

∂r
t

)
(23)

whereas ∂n0/∂t=0. This means for the simple system
considered that the sinusoidal perturbation nm eimθ

is traveling with the electron diamagnetic velocity in
poloidal direction, i.e. nm(t) eimθ is moving with tan-
gential velocity

r
∂θ

∂t
= − Te

en0B

∂n0

∂r
(24)

Notice that the velocity is independent of the mode
numberm. A sketch of the geometry of the drift wave
motion is shown in Fig. 1

∇n0

v∗ = −B×∇pe

B2

B

r

θ

Figure 1: Geometry of a drift wave. The perturbation
travels with the electron diamagnetic velocity.

E. “Anomalous” Transport in Drift Wave Models

Reconsidering Eq. 21 one finds that the homogeneous
component n0 will change in time if nm and φm are
not in phase anymore. This can be regarded as a
transport mechanism because for the radial compo-
nent vm of the E×B velocity due to the perturbation
φm one finds vm=−imφm/rB and therefore a radial
flux Γr shows up giving

∂n0

∂t
= −∇ · Γ , Γ = 2 Re {nm v∗m} er (25)

This relation is illustrated by Fig. 2 showing the effect
on the net transport due to a phase shift σ between
perturbations ñ ∼ sin(mθ) and φ̃ ∼ sin(mθ+σ). For

σ=0, the net transport
∫
Γ̃ dθ is zero and for σ 6=0 the

total particle transport is finite.

ñ

ñ

φ̃

φ̃

Γ̃

Γ̃

θ

0

0

Figure 2: Effective transport Γ̃ for perturbations ñ
and φ̃ with m=4 with phase shift σ=0 (top) and
σ=π/3 (bottom). The net flux is (dotted lines) is

zero if ñ and φ̃ are in phase.
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F. Linear Instabilities

As has been shown in the last section a phase shift be-
tween perturbations in density and potential is able
to modify the background profile of the density by
means of an effective flux which can be much larger
than the collisional diffusive flux [5]. On the other
hand the Eq. 22 tells us that such a phase shift will
also modify the profile of the perturbation density.
Instead of a stable drift wave as before, when nm and
φm were in phase, it is then possible that the pertur-
bation is damped or amplified. Of particular interest
are of course the perturbations which grow in time
and reach an amplitude level such that they might
affect the global plasma profile. The question of pos-
sible candidates for a significant impact on plasma
transport can be answered to a certain extent by a
linear analysis. This approach is based on the lin-
earization of the model equations and inspection of
the temporal behaviour of Fourier decomposed per-
turbations. This will be illustrated by a simple exam-
ple, the resistive instability. We start with a subset of
model equations similar to the one of Section II. D but
also including resistivity, parallel particle flow and a
simplified vorticity equation.

∂n

∂t
+VE ·∇n = −∇‖

(
n v‖

)
(26)

η‖ J‖ =
Te∇‖n

e n
−∇‖φ (27)

mi

eB2

(
∂∇2

⊥φ

∂t
+VE ·∇∇2

⊥φ

)
=

∇‖J‖
en

(28)

Neglecting the parallel ion motion, i. e. J‖≈−env‖,
and replace ∇2

‖ by a constant −k2‖ leads to set of
model equations known as the Hasegawa-Wakatani
model or dissipative coupling model [6]. One finds
for perturbations with mode number m as defined in
Eqs. 19 and 20 the evolution equations

∂nm

∂t
=

im

rB

∂n0

∂r
φm +

k2‖
e η‖

φm −
k2‖ Te

e2 n0 η‖
nm (29)

mi

eB2

∂∇2
⊥φm

∂t
=

k2‖

e n0 η‖
φm −

k2‖ Te

e2 n2
0 η‖

nm (30)

Replacing now also ∂/∂t→−i ω and ∇2
⊥→−k2⊥ via

Fourier decomposition one finds the algebraic equa-
tions

(D − i ω)
nm

n0
− (D − i ω∗)

e φm

Te

= 0 (31)

D
nm

n0
−
(
D − i ω k2⊥ ρ2s

) e φm

Te

= 0 (32)

where the coupling parameterD and the diamagnetic
frequency ω∗ are defined by

D =
k2‖ Te

e2 n0 η‖
, ω∗ = − mTe

e n0 r B

∂n0

∂r
(33)

and ρs=cs/ωi, c2s=Te/mi, ωi=eB/mi, are the drift
scale, the sound speed and the gyro-frequency, respec-
tively. Finally, this leads to the dispersion relation for
the frequency ω

ω2 + i
1 + k2⊥ρ

2
s

k2⊥ρ
2
s

Dω − i
D

k2⊥ρ
2
s

ω∗ = 0 (34)

If k2⊥ρ
2
s ≪ 1 this reduces to

ω2 + i α (ω − ω∗) = 0 , α =
D

k2⊥ρ
2
s

(35)

and for η‖→0 the stable drift wave is recovered
(ω=ω∗). For finite resistivity the frequency ω con-
tains a non-zero imaginary part, which represents an
unstable branch. If η‖ is small but finite, the solution
can be expressed approximately by

ω ≈ ω∗ + i
ω2
∗

α
(36)

Therefore it is possible that the drift wave perturba-
tion becomes unstable, i. e. it starts to grow exponen-
tially with a growth rate γ ≈ ω2

∗/α.

G. Mixing Length Estimate

The linear instabilities discussed in the last section
give important information on the plasma dynamics.
Using the linear theory allows to draw conclusions on
risky plasma configurations and typical time scales of
plasma dynamics. However, it does not capture the
important non-linear interaction in a plasma leading
to non-linear saturation and the “anomalous” trans-
port due to collective effects. To obtain more insight
into this kind of effects requires substantial effort in
development and analysis of non-linear models, theo-
retically and numerically as well. Nevertheless, many
estimates widely used in theories on radial turbulent
fluxes and plasma confinement use the so-called mix-
ing length approach to draw conclusions just from lin-
ear growth rates of plasma instabilities. This is based
on the idea that the linear instability with wave num-
ber k⊥ dominates the spatial structure of the turbu-
lent field. On the other hand a rough estimate for the
diffusion of particles is given by the ratio two basic
statistical quantities describing the turbulent dynam-
ics, i. e. D∼λ2

c/τc, where λc denotes the correlation
length and τc the correlation time. If one equates
now the correlation length λc with the inverse wave
number k⊥ (see Fig. 3 for an illustration) and con-
siders the correlation time τc to be of the order of
the inverse growth rate γ (the imaginary part of the
frequency ω in the standard linear theory), one finds

D⊥ ∼ γ

k2⊥
(37)

This is the standard mixing length diffusion coeffi-
cient used often in the literature. A refined version
of this has been proposed by Connor and Pogutse [7].
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However, it must be noted that this estimate can be
quite useful for a qualitative analysis of trends, but
very often the estimate is not useful for quantitative
results.

λc

Figure 3: Snapshot of a turbulent structure of the
electric potential φ. Lengths and amplitudes are
given in a.u. The correlation length λc is indicated
by the scale at the bottom left.

H. Non-Linear Interaction via E×B-Advection,
Three-Wave-Coupling

So far we have considered the E×B advection just for
the quasilinear model, where this mechanism leads
to rotation and destabilization of perturbations and
introduces an additional “anomalous” transport. If
more perturbation modes are present another effect
comes into play: the energy conserving interaction
between modes leading to an energy cascade. To
study this we reconsider the change in particle density
due to the E×B-advection.

∂n

∂t
= −VE ·∇n (38)

Again a Fourier decomposition of the density n and
the electric potential φ is useful.

n =
∑

k

nk e
ik·x , φ =

∑

k

φk e
ik·x (39)

Here x is the three-dimensional position vector and k

the wave vector of the particular Fourier component.
This gives

VE ·∇n = −
∑

k′,k′′

B× k
′

B2
·k′′ φk′ nk′′ ei(k

′+k
′′)·x (40)

∂nk

∂t
=

B

B2
·
∑

k′

(
k
′ × k

)
φk′ nk−k′ (41)

This means that the change of nk can be considered
as a (in general infinite) sum of interactions where
three different wave vectors are involved, namely k,

k
′ and their difference k − k

′. Using this relation it
can be proved that the following relation holds for a
each triplet in Fourier space {k1,k2,k3} which fulfills
k1+k2=k3

∂

∂t

|nk1
|2

2
=

B

B2
· (k3 × k1) Re

{
φk3

n∗
k2

n∗
k1

}

+
B

B2
· (k1 × k2) Re

{
φ∗
k2

nk3
n∗
k1

}
(42)

∂

∂t

|nk2
|2

2
=

B

B2
· (k2 × k1) Re

{
φ∗
k1

nk3
n∗
k2

}

+
B

B2
· (k3 × k2) Re

{
φk3

n∗
k1

n∗
k2

}
(43)

∂

∂t

|nk3
|2

2
=

B

B2
· (k1 × k3) Re

{
φk1

nk2
n∗
k3

}

+
B

B2
· (k2 × k3) Re

{
φk2

nk1
n∗
k3

}
(44)

Here the reality condition n−k = n∗
k
has been used.

Therefore, the sum of the three squared amplitudes
is conserved

∂

∂t

( |nk1
|2

2
+

|nk2
|2

2
+

|nk3
|2

2

)
= 0 (45)

This result allows the conclusion that any non-

Figure 4: Example of the temporal evolution of three
wave amplitudes |nk1

|2, |nk2
|2, |nk3

|2 (curve 1, 2 and
3) interacting via E×B-advection. The sum of the
three contributions is also shown (curve 4).

zero mode k1 in the system interacts with all pairs
{k2,k3} of modes fulfilling the relation k1+k2=k3 in
a way that fluctuations are permanently exchanged
and distributed in Fourier space, but always con-
served. This is the non-linear mechanism behind the
breaking of structures into smaller entities and vice
versa.
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I. Electromagnetic Effects, Shear Alfvén Waves, Tear-
ing Modes

In this section the role of the electromagnetic pieces
in the momentum equations are discussed. For this
purpose we consider the following subset relating the
electric potential φ and the magnetic potential A‖.

∇‖φ+
∂A‖

∂t
= 0 (46)

mi

eB2

∂∇2
⊥φ

∂t
=

∇‖J‖

en
(47)

The first equation is a part of the parallel momen-
tum balances and simply expresses that the parallel
electric field is zero, i. e. E‖=0. The second repre-
sents the response of the perpendicular electric field
on a change in the parallel current to ensure quasineu-
trality. Now we consider small perturbations in the
electric and magnetic field (labeled by a tilde) such
that ∇‖ is undisturbed and governed by the domi-
nant equilibrium field. Also the density n is assumed
to be constant. Due to Ampére’s law µ0J‖=−∇2

⊥A‖

one obtains for the first equation Eq. 46

µ0

∂J̃‖

∂t
= ∇‖∇2

⊥φ̃ (48)

and together with the second equation Eq. 47 it fol-
lows

∂2

∂t2
∇2

⊥φ̃ = V 2
A ∇2

‖∇2
⊥φ̃ (49)

∂2

∂t2
J̃‖ = V 2

A ∇2
‖J̃‖ (50)

where

VA =

√
B2

µ0 mi n
(51)

These are wave equations for the perturbations in
vorticity and current density, describing the travel-
ing of the perturbations along the magnetic field with
Alfvén speed VA. If also a response of particle den-
sity via electron velocity is included and back-reaction
via pressure gradient in the parallel electron momen-
tum balance is taken into account, the resulting (lin-
ear) perturbations are called drift-Alfvén waves. It is
also to be noted that by adding the resistive term in
Eq. 46, i. e. considering E‖=−η‖ J‖ instead of E‖=0,
and taking into account the magnetic field fluctua-
tions in the parallel gradient ∇‖ the two equations
Eq. 46 and Eq. 47 describe a tearing mode, an im-
portant resistive instability [8]

J. Sound Waves

If one considers now a particular situation where the
dynamics is governed by parallel motion

∂n

∂t
= −∇‖(nv‖) (52)

and - by neglect of electron mass - Ohm’s law can be
reduced to

−∇‖pe + e n η‖ J‖ − αn∇‖Te

+e n∇‖φ+ e n
∂A‖

∂t
= 0

(53)

Then one finds for the linearized parallel ion momen-
tum equation

mi n

(
∂u‖

∂t
+ u‖ ∇‖u‖

)
= −∇‖ (pi + pe) (54)

If one also assumes that the parallel current density
is zero, i. e. J‖=e n

(
u‖ − v‖

)
=0, the continuity equa-

tion becomes

∂n

∂t
= −∇‖(nu‖) (55)

and linearizing the equations about a stationary
equilibrium with constant temperatures Te and Ti,
i. e. n=n̄+ ñ and u‖=ũ‖ gives

∂ñ

∂t
= −n̄∇‖ũ‖ ,

∂ũ‖

∂t
= −Te + Ti

mi n̄
∇‖ñ (56)

Therefore the perturbations ñ and ũ‖ fulfill

∂2ñ

∂t2
= c2s ∇2

‖ñ ,
∂2ũ‖

∂t2
= c2s ∇2

‖ũ‖ (57)

where cs=
√
(Te + Ti)/mi is the sound speed. Like

the Alfvén waves this is a wave like motion of pertur-
bations along the magnetic field lines.

K. Curvature Effects

In the vorticity equation Eq. 9 and the continuity
equation Eq. 10 terms containing the divergence of
the perpendicular electron velocity v⊥ appear. They
can introduce an important kind of dynamics which
we want to study by considering the subset

∂n

∂t
= −n∇ · v⊥ (58)

mi

eB2

∂∇2
⊥φ

∂t
= −∇ · v⊥ +∇ ·VE (59)

According to the discussions above it is assumed that
the dominant contributions in v⊥ are given by the
E×B-velocity and the diamagnetic velocity, i.e.

v⊥ =
B×∇φ

B2
− TeB×∇n

enB2
(60)

Here Te=const. has been assumed, but this does not
restrict the conclusions to be drawn from this illus-
trative example. It can be seen that for B=const.,
i. e. for a homogeneous magnetic field, the divergence
∇ · v⊥ vanishes. This means that the perpendicu-
lar electron motion is incompressible for a homoge-
neous magnetic field. But in a curved magnetic field
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the motion becomes compressible and a coupling be-
tween the density n and the vorticity ∇2

⊥φ shows up.
To continue the exercise we have to assume a concrete
magnetic field structure. A reasonable choice is the
standard magnetic field

B =
B0

qR
eθ +

B0R0

R2
eϕ (61)

where θ is the poloidal angle, ϕ the toroidal angle,
R=R0 + r cos θ, with major radius R0 and minor ra-
dius r. The factor q=q(r) is the so-called pitch pa-
rameter. This represents a twisted toroidal magnetic
field with nested concentric circular flux surfaces and
a magnetic field strength B0 at the magnetic axes.
Evaluating the divergences is now straightforward but
cumbersome. We will just quote the result for the
limit of high aspect ratio (r/R0→0) and define the
curvature operator K.

K(f) ≡ ∇ ·
(
B×∇f

B2

)

≈ − 2

B0R0

(
cos θ

1

r

∂f

∂θ
+ sin θ

∂f

∂r

) (62)

One obtains

∂n

∂t
= −nK(φ) +

Te

e
K(n) (63)

mi

eB2

∂∇2
⊥φ

∂t
=

Te

en
K(n) (64)

Now consider small perturbations of the form

ñ =
∑

m

ñm eimθ , φ̃ =
∑

m

φ̃m eimθ (65)

and linearize the equations (also the term ∼K(n) in
the density equation is neglected here, because it is
not relevant for our considerations)

∂ñm

∂t
=

i n

R0B0

(
m− 1

r
φ̃m−1 +

m+ 1

r
φ̃m+1

−∂φ̃m−1

∂r
+

∂φ̃m+1

∂r

) (66)

∂

∂t

(
∂2φ̃m

∂r2
+

1

r

∂φ̃m

∂r
− m2

r2
φ̃m

)

= − i TeB0

minR0

(
m− 1

r
ñm−1 +

m+ 1

r
ñm+1

−∂ñm−1

∂r
+

∂ñm+1

∂r

)

(67)

The result is that the curvature of the magnetic field
introduces an additional coupling between a mode ñm

and the side bands φ̃m±1 and vice versa. Actually
this leads to the so-called ballooning instability [9]

which is located at the low field side of the tokamak,
reflecting that a toroidal configuration is not sym-
metric anymore with respect to the poloidal angle.
An important special case of this interaction is to be
mentioned. If one assumes that the only perturba-
tions present are

ñ = ñ∗(r) sin θ , φ̃ = φ̃0(r) (68)

one obtains for the sinusoidal density fluctuation

∂ñ∗

∂t
=

2n

B0R0

∂φ̃0

∂r
(69)

and for axisymmetric component of the electric po-
tential

∂

∂t

[
1

r

∂

∂r

(
r
∂φ̃0

∂r

)]
= −TemiB0

nR0

[
1

r

∂

∂r
(r ñ∗)

]

(70)

Assuming n≈const. one can integrate the second
equation with respect to r and it follows

∂

∂t

∂φ̃0

∂r
= − TeB0

minR0
ñ∗ (71)

By inserting Eqs. 69 and 71 into each other one ob-
tains

∂2ñ∗

∂t2
= −ω2

GAM ñ∗ (72)

∂2

∂t2
∂φ̃0

∂r
= −ω2

GAM

∂φ̃0

∂r
(73)

The solutions are oscillations with frequency

ωGAM =

√
2Te

miR2
0

(74)

This oscillation of the sinusoidal component of the
density and the radial derivative ∂φ̃0/∂r is called
the Geodesic Acoustic Mode (GAM) and has been
observed in many tokamak experiments [10]. The

derivative ∂φ̃0/∂r actually represents a homogeneous
poloidal flow in the plasma which is known as the
Zonal Flow.

L. Résumé I

In the last sections we have paid attention to partic-
ular pieces of the basic set of model equations Eqs. 9-
14. These pieces represent limiting cases of the full
dynamics represented by the complete model. By this
separation several isolated processes could be identi-
fied like drift waves (Sec. II. D), the dissipative in-
stability (Sec. II. F), Alfvén waves (Sec. II. I), sound
waves (Sec. II. J) and GAM oscillations (Sec. II. K).
In the full model and in reality all these effects ap-
pear simultaneously and interact in a complicated
way. Sometimes a single effect might be dominant,
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but usually they have to be considered all together to
obtain a consistent picture. Of course there are even
more important effects hidden in the set of model
equations or even more complete models not eluci-
dated here. But the discussion of such effects can be
conducted by similar reduction techniques presented
here. We conclude this section by a rough estimate of
the time scales related to the mechanisms mentioned
above. For this purpose we compare the time scales
of the drift wave motion τ−1

∗ ∼ k⊥ v∗, the dissipative
instability τ−1

α ∼ ω2
∗/α, the Alfvén waves τ−1

A ∼ k‖ VA,
the sound waves τ−1

s ∼ k‖ cs and the GAM oscillations

τGAM∼
√
2 cs/R0 and the diffusive time scale accord-

ing to the mixing length estimate τD∼k2⊥ a2 τα for
the dissipative instability. Using realistic estimates
k⊥ ρs∼1, k‖ R0∼1, ∂n0/∂r ∼ n0/a, where a is the
minor radius of the tokamak and R0 its major radius
this gives for Te=Ti=100 eV, n0=1019 m−3, a=0.5 m,
R0=1.75 m, mi=2 mp and B=1 T

τ∗ ∼ 7.2 · 10−6 s , τα ∼ 8.6 · 10−4 s (75)

τA ∼ 3.6 · 10−7 s , τs ∼ 2.5 · 10−5 s (76)

τGAM ∼ 1.7 · 10−5 s , τD ∼ 1.0 · 102 s (77)

Of course these are rough estimates and the precise
values can differ strongly for different plasma param-
eters. But it is typical that the Alfvén wave mo-
tion is the fastest process and that the time scales
of the different effects cover a range of several orders
of magnitude. The same can be concluded for the
spatial scales hidden in the complete plasma trans-
port model. This has important consequences for the
practical computation of plasma transport and tur-
bulence. The necessity to resolve very short and very
large temporal and spatial in a single model scales
makes it an enormous challenge to develop appropri-
ate numerical methods for an efficient use of comput-
ers available.

III. TURBULENT TRANSPORT MODELLING

Even though the basic model defined by Eqs. 9-14 is
not complete and misses certain important physical
effects, it would be desirable to solve at least this re-
duced set in detail and without any approximation.
Unfortunately the large range of temporal and spa-
tial scales mentioned in the last section makes it very
difficult to obtain results for realistic tokamak device
parameters and operational regimes in an acceptable
time. High resolution grids and a huge number of
small enough time steps would be needed in a nu-
merical computation. To make it worse, the imple-
mentation of complicated magnetic field geometries,
e. g. including X-points, is an additional challenge
for analytical and numerical methods. A first order
workaround often used is the splitting of time scales
and the restriction of the model to a certain range of

dynamics. Quite often it is useful to consider turbu-
lent fluctuations only and to consider the large scale
and slow dynamics as quasistationary. This reduces
simulation run time because the slow processes do
not have to taken into account. The need to cope
with such requirements led to the derivation of sev-
eral models with different content especially designed
for particular scenarios, plasma devices and parame-
ter regimes. It is not possible to compare them all in
a short tutorial. But in the next sections we present
an example of how a model reduction can be con-
ducted and checked in a systematic way using a scale
separation and an appropriate energy theorem.

A. The Problem of Setting up a Consistent Turbu-
lence Model

In developing a model suitable for numerical solution
we require that it is

• reasonably appropriate for the physics problem
to be studied with respect to dominant transport
mechanisms and geometry

• numerically tractable

• allowing a simulation in acceptable run time

• meeting the requirement of energetic consistency

In particular the last point is sometimes missed and
model equations which might be reasonable and beau-
tifully simple suffer from artificial effects due to incon-
sistencies. In the next section a practical example is
presented. The four-field-model has been used often
in turbulence studies and for this model the principles
of energetic consistency can be illustrated by simple
means.

B. Example: Four-Field-Model in Toroidal Geometry

In a first step we simplify the model Eqs. 9-14 by
assuming Ti=0, Te=const., and by neglecting most
of the parallel advection. Then one obtains for the
continuity equation

∂n

∂t
+VE ·∇n = −∇‖

(
n v‖

)

−n∇ ·VE − n∇ · v∗ ,

(78)

and for Ohm’s law

∂A‖

∂t
=

Te

en
∇‖n−∇‖φ− η‖ J‖ (79)

The equation for the conservation of parallel ion mo-
mentum reduced by the use of Ohm’s law Eq. 79 and
reads

∂u‖

∂t
+VE ·∇u‖ = − Te

mi n
∇‖n (80)
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and the vorticity equation is

mi

eB2

(
∂∇2

⊥φ

∂t
+VE ·∇∇2

⊥φ

)

=
∇‖J‖
e n

− ∇ · (nv∗)

n

(81)

Now a partly linearization with respect to fluctua-
tions is performed. Except for n the background
pieces of φ, u‖, and A‖ are assumed to be zero, i.e.

n = n̄+ ñ , φ = φ̃ , u‖ = ũ‖ , A‖ = Ã‖ (82)

where n̄ is a constant density. This defines a four-
field-model for fluctuations

dñ

dt
= −ṼE ·∇n̄+

∇‖J̃‖
e

− n̄∇‖ũ‖

−n̄K(φ̃) +
Te

e
K(ñ)

(83)

∂Ã‖

∂t
=

Te

e n̄
∇‖ñ−∇‖φ̃− η‖ J̃‖ (84)

dũ‖

dt
= − Te

mi n̄
∇‖ñ (85)

mi n̄

B2

dw̃

dt
= ∇‖J̃‖ + TeK(ñ) (86)

where

d

dt
=

∂

∂t
+ ṼE ·∇ , ∇‖ =

B+ B̃

B
·∇ (87)

w̃ = ∇2
⊥φ̃ , µ0 J̃‖ = −∇2

⊥Ã‖ (88)

Notice that a radial derivative of n̄ is taken into ac-
count. This is a second parameter of the model in
addition to the density n̄ itself. Both quantities are
taken into account as constants to keep the framework
as simple as possible (of course n̄=const. excludes a
finite gradient ∂n̄/∂r when taken accurately). Notice
also that the parallel derivative contains the fluctuat-
ing magnetic field B̃ related to the magnetic potential
Ã‖. This is approximately given by

B̃ = −B×∇Ã‖

B
(89)

Despite the approximations needed to derive the four-
field-model it still contains enough physics to describe
reasonably the drift-Alfvén turbulence in the edge re-
gion of tokamak plasmas. Applications of this model
and similar or even more reduced variants have been
reported in Refs. [11–20], to mention only a few and
without claiming to be exhaustive.

C. Energetics of the Four-Field-Model

The difficulties in the derivation of the four-field-
model of the last section gives rise to the question
to what extent the resulting model equations are still

realistic and appropriate for the problem to be stud-
ied. A very powerful and useful method to get some
insight into the particular features of the simplified
model found by certain manipulations is the analysis
of an energy theorem. This means that the desirable
property of energy conservation is still present in the
simplified model. For this purpose an appropriate en-
ergy functional has to be found. For the example of
the four-field-model this is the energy density

Ũ =
mi n̄

2
Ṽ 2
E +

mi n̄

2
ũ2
‖ +

B̃2

2µ0
+

n̄Te

2

ñ2

n̄2
(90)

Using appropriate boundary conditions the temporal
change of the different contributions integrated over
the entire computational volume is given by

∂

∂t

∫
mi n̄

2
Ṽ 2
E dV = −mi n̄

B2

∫
φ̃
∂∇2

⊥φ̃

∂t
dV

= −
∫

φ̃∇‖J̃‖ dV −
∫

Te φ̃K(ñ) dV

(91)

∂

∂t

∫
mi n̄

2
ũ2
‖ dV = min̄

∫
ũ‖

∂ũ‖

∂t
dV

= −
∫

Te ũ‖∇‖ñ dV

(92)

∂

∂t

∫
B̃2

2µ0
dV =

∫
J̃‖

∂Ã‖

∂t
dV

=

∫
Te

e n̄
J̃‖∇‖ñ dV −

∫
J̃‖∇‖φ̃ dV

−
∫

η‖ J̃
2
‖ dV

(93)

∂

∂t

∫
n̄Te

2

ñ2

n̄2
dV =

∫
Te

n̄
ñ
∂ñ

∂t
dV

= −
∫

Te ñ ṼE · ∇n̄

n̄
dV +

∫
Te

en̄
ñ∇‖J̃‖ dV

−
∫

Te ñ∇‖ũ‖ dV −
∫

Te ñK(φ̃) dV

(94)

All contributions where the fluctuations are advected
with the E×B-velocity ṼE vanish. Strictly speaking,
these contributions vanish exactly only if ∇ · ṼE=0,
i. e. if ṼE is incompressible. But one can consider the
corrections due to compressibility for these terms to
be small if the fluctuations are small. For the other
contributions it can be proved that the following re-
lations hold

∫
f̃ ∇‖g̃ dV = −

∫
g̃∇‖f̃ dV (95)

∫
f̃ K(g̃) dV = −

∫
g̃K(f̃ ) dV (96)
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Therefore, one gets for the temporal evolution of the
total energy

∂E

∂t
=

∫
∂U

∂t
dV

= −
∫

Te ñ ṼE ·∇n̄

n
dV −

∫
η‖ J̃

2
‖ dV

(97)

The second term in the second line is negative definite
and represents a sink for the energy due to resistivity.
The first term of the second line is usually positive
and represents the source for the turbulence due to
the gradient ∂n̄/∂r in the background density. All
other contributions cancel each other and this repre-
sents an energy conserving exchange of energy. For
example the piece

∫
Te ũ‖ ∇‖ñ dV gives the channel

of energy exchange between ñ and ũ‖ due to sound
waves. Such a kind of energy theorem helps to check
if a certain set of model equations is consistent and to
get some insight into its dynamics. Also it is obvious
that any modifications in the model should preserve
the energetic consistency. If, e. g., the curvature term
∼K(φ̃) in the continuity equation is removed from the
model, the corresponding term ∼K(ñ) should be re-
moved too. Otherwise an artifical sink/source of en-
ergy disturbs the dynamics of the model and leads
to unpredictable results. The same is valid if some
manipulations are done to a single equation of the
model. Usually this needs also modifications in other
equations to keep it consistent.

D. Résumé II

It has been shown that even a simplified model with
limited applicability needs a careful derivation and in-
spection of the consistencies of approximations used.
This has to be kept in mind as long as one is re-
stricted to simplified approaches due to the lack of
computational power or appropriate numerical meth-
ods for more general problems. To overcome the
limitations several activities are still ongoing to im-
prove the physics content and the numerical treat-
ment, e. g. the extension to gyro-fluid models and
the development of gyro-kinetic models and simula-
tions (see, e .g. , Refs. [21–24] and references therein).
Also the increase of computational power available, in
particular the use of parallel computers, offers the im-
provement of accuracy in the modelling of turbulent
plasma dynamics. Nevertheless, the basic concepts
presented in this tutorial remain of importance also
in interpretation and analysis of improved models and
techniques.

.
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