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ABSTRACT

This lecture addresses, on the basis of elementary
and intuitive treatment, the process of coupling of
electromagnetic power to plasma. Coupling is here
meant in a broad sense. It consists of four different
steps. (i) The first one is the coupling of vacuum elec-
tromagnetic power to plasma waves. An elementary
antenna coupling theory is given. The state of the art
in coupling models and status of comparisons with
experiments are briefly discussed. (ii) The second is
the transfer of plasma wave energy to particle energy.
The resonant processes leading to this transfer are de-
scribed in a heuristic way. (iii) The third one is the
build-up of fast particle populations. It will be out-
lined through a sketch of quasilinear diffusion for the
simple case of Landau damping. (iv) The last step is
the conversion of power through the resonant particle
population to bulk plasma heating by collisions, which
will be briefly addressed.

I. INTRODUCTION

The principle of wave heating is similar for all
schemes and is sketched in Fig.1. The electromagnetic
energy is produced by a generator and sent to the ma-
chine area via transmission lines constituted of coaxial
lines at low frequency and waveguides at higher fre-
quency. At very high frequency optical transmission
is also possible. Some matching circuitry has to be
incorporated in the transmission system in order to
prevent the reflected power to come back to the gen-
erator. The transmission line is connected to some
launching structure (antenna, waveguide,) that will
couple the power inside the machines vacuum cham-
ber. The vacuum wave that exists inside the launch-
ing structure and at the very edge of the plasma is
then converted to a plasma wave that transports elec-
tromagnetic energy to some region inside the plasma
where it will be absorbed. This is the region where
the resonant process occurs. This process accelerates
the population of particles that is in resonance with
the wave, usually a small fraction of the plasma par-
ticles. A slightly or strongly non-maxwellian resonant
population builds up against the restoring force of col-
lisions between this population and the remainder of

the plasma. It is through the latter collisional process
that the bulk of the plasma is heated up. In this pa-
per, we shall not describe the technical parts of the
launching systems, i.e. generators, transmission lines,
matching systems (see lecture by Dumortier [2]), but
shall focus on the physics of power coupling. Let us
first start with the elementary wave theory.

Figure 1: Principle of heating by plasma waves

II. WAVE PROPAGATION IN A PLASMA

The study of plasma waves is a very broad subject
and we will limit ourselves to to the cold-plasma ap-
proximation [1] which is mostly sufficient to describe
the basic propagation properties of the waves used in
plasma heating. Interested readers should consult ref-
erences [8, 9] for an exhaustive description of plasma
waves.

We consider a plasma immersed in a static mag-
netic induction field ~B0. If the wave is considered
as a first-order perturbation with a harmonic space-

time dependence ∼ exp
[
−i(ωt− ~k · ~x)

]
then the cold-

plasma dispersion relation can be written[8]:

D · ~E = ~k ×
(
~k × ~E

)
+
ω2

c2
εεε · ~E = 0 (1)

where ~k is the wave vector, ~E is the wave electric field,
ω is the generator angular frequency and c is the speed
of light. It is sometimes useful to work instead with
the refractive index vector ~n = ~k/k0 where k0 = ω/c
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is the vacuum wave vector. The components of the
cold-plasma dielectric tensor εεε are given by [8]:

εεε =

 ε⊥ iεxy 0
−iεxy ε⊥ 0

0 0 ε‖

 with

ε⊥ = 1−
∑

s

ω2
ps

ω2−ω2
cs

εxy =
∑

s

ω2
psΩcs

(Ω2
cs−ω2)ω

ε‖ = 1−
∑

s

ω2
ps

ω2

(2)
The wave equation is an algebraic homogeneous sys-
tem of 3 equations for the 3 cartesian components of
the electric field. It will have a non vanishing solution
if and only if the determinant of D is zero. This de-
fines the dispersion relation, an implicit relation be-
tween the generator frequency, the parallel and per-
pendicular components of the refractive index vector
~n⊥ and n‖, and the plasma properties (encoded in the

dielectric tensor). The dispersion equation solution
determines all the wave modes which can propagate
in the plasma for a given plasma model. If the static
magnetic induction ~B0 is taken along the z-direction
of a cartesian frame, then, because of the isotropy in
the plane parallel to ~B0, the direction of the perpen-
dicular component of the wave vector ~k⊥ is irrelevant
and can be arbitrarily chosen as x-direction. The dis-
persion equation is then expressed as a bi-quadratic
equation in n⊥ = | ~n⊥|:∣∣∣∣∣∣

ε⊥ − n‖2 iεxy n⊥n ‖
−iεxy ε⊥ − n⊥2 − n‖2 0
n⊥n ‖ 0 ε‖ − n⊥2

∣∣∣∣∣∣ = 0 (3)

We shall generally express its solution as k⊥
2 =

κ(k‖, ω) because k‖ is generally fixed by the launcher
structure. The two roots are often called fast (or
magnetosonic) and slow waves. Their behaviour will
be studied in details in [3, 4] for the various range
of frequencies. For our purpose we simply need to
underline that at some frequencies (corresponding to
specific locations in the plasma) ”something can hap-
pen” ! First, the dielectric tensor becomes singu-
lar each time ω = ωcs. This means that the parti-
cle current becomes infinite for a finite electric field
(wave-particle resonances discussed in sections IV-
C,D, E). The other special frequencies are those for
which k⊥

2 →∞ and appear when ε⊥ = 0. We speak
about wave resonances and they will be discussed in
section IV-B. In addition, at low frequencies -ion cy-
clotron range of frequencies or below- ε‖ is much larger
than the other elements such that the dispersion equa-
tion reduces to the top left 2X2 determinant (3). This
approximation corresponds to the zero electron mass
limit and leaves only one wave (the fast wave) in the
dispersion. In the ICRH the slow wave is evanescent
almost everywhere in the plasma bulk, and practically
the zero electron mass limit is equivalent to neglect-
ing the parallel component of the electric field. This
can be forced by setting up a screen in front of the
launcher.

III. ELEMENTARY WAVE COUPLING THEORY

A. Types of launcher and coupling

The simplest case is that of electron cyclotron
waves in large machines. In this case, the wave-
length of the vacuum wave λ = 2π/k0 is very small
as compared to the plasma cross-section. The wave is
launched as a propagating wave pencil that will pro-
gressively convert to a plasma wave. Because of the
smallness of the wavelength, the boundary conditions
at the conducting wall of the machine, as well as on the
launching structure, play no explicit role. The wave
can be accurately described in the geometric optics
limit and the only boundary conditions that matter
are the initial launching angle and reflections at the
wall, if any.

If the vacuum wavelength becomes comparable to
the antenna structure, the scale length of variations
of edge plasma parameters or the plasma radius, the
launcher environment and the plasma will affect the
coupling process and a full boundary-value problem
has to be solved to describe it. Such is usually the case
of Alfvén wave, ion cyclotron, or lower hybrid wave
launchers in medium or large-size machines. But this
may also be the case of electron cyclotron launchers
in low-field, small machines.

We shall now introduce coupling theory, on the
basis of the simplest model. More sophisticated the-
ories rest on similar principles but include more of a
realistic geometry.

B. Coupling model

We consider the simplest case of an antenna fac-
ing a large plasma such that the plasma looks nearly
uniform in the toroidal (z) and poloidal (y) directions
(Fig.2). In the radial direction x the plasma is usually
non-uniform, and this is taken into account in stan-
dard coupling models, but here, in order to simplify
the algebra, we consider a step model. The density
is zero for x < 0 and constant density for x posi-
tive. The influence of a realistic density profile was
studied in [30]: the cut-off position and the density
gradient were shown to have a primary importance
in the assessment of an antenna coupling capabilities,
but these considerations are out of the scope of the
present introduction. We assume that the absorption
is good and hence, there is no reflected wave. This is
the so-called single-pass approximation. In addition,
we shall also assume that the system is invariant in
the y-direction (which implies in particular that the
antenna is infinite) and neglect propagation in the y-
direction (ky = 0). Next, we have to choose a model
for the plasma waves. To be specific, we choose the
case of coupling in the ion cyclotron frequency range
(ICRF). The slow wave being evanescent in the plasma
bulk, we shall consider only coupling to the fast mag-
netosonic wave (FW). As the FW equations will be
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needed later on, we first derive them, starting from
the cold wave theory.

Figure 2: 2-D slab coupling model. The plasma is
uniform in the y (poloidal) and z (toroidal) directions.
The width of the antenna is 2wz, the distance between
the antenna and the plasma is a and the distance be-
tween the antenna and the wall is d.

C. The fast magnetosonic wave equation

We write the full cold-plasma dispersion relation
in terms of the parallel (n‖ = n sin θ) and perpendicu-
lar (n⊥ = N cos θ) components of the refractive index

n‖ =
k‖

k0
;n⊥ =

−i
k0

d

dx
(4)

We keep to n⊥ its operator meaning because x is the
direction of inhomogeneity. In the parallel direction,
the plasma is homogeneous and we use the Fourier
transformed form. The dispersion equation (3) de-
rived previously can be used and we take the zero
electron mass limit to uncoupling the FW. This limit
implies that the parallel electric field cannot penetrate
the plasma, i.e. that the evanescence length of the
slow wave is zero. Eq. (1) can be recast to

k⊥,FW
2Ey = −i

(
d

dx
+ µky

)
(ωBz) (5a)

k⊥,FW
2Ex = −

(
ky + µ

d

dx

)
(ωBz) (5b)

iωBz =
d

dx
Ey − ikyEx (5c)

with µ = εxyk0
2/u, u = k0

2ε⊥ − k‖2 and k⊥,FW
2 =

u
(
1− µ2

)
. The other components of the FW field

follow from Maxwell’s equation iω ~B = ~∇ × ~E (with
Ez = 0):

Bx =
−k‖
ω Ey; By =

k‖
ω Ex (6)

Finally, taking the limit ky → 0 and eliminating Bz

from (5a)-(5c), we obtain the FW equation:

d2Ey

dx2
+ k⊥,FW

2Ey = 0 (7)

D. The Plasma surface impedance

For a uniform plasma, the wave equation (7) has
constant coefficient and the solutions are simply ex-
ponential. The single-pass approximation allows us to
impose at z →∞ a radiating boundary condition and
the wave solution in the plasma can be written:

Ey = CIII exp (ik⊥,FWx) (8)

where CIII is a constant (relative to region III in Fig.
2) to be determined. Eq. (6) then gives the Hz field
component:

Bz =
k⊥,FW

ω
Ey (9)

The field in the plasma is thus known up to a multi-
plicative constant. Tangential field components being
continuous at the plasma-vacuum interface (II-III),
their ratio is also continuous. This quantity is known
as the surface impedance of the plasma ZS

ZS =
Ey

ωBz
=

1

k⊥,FW
(10)

We express the continuity of this quantity at x = 0 as

[[ZS ]]0 = ZS(0+)− ZS(0−) = 0 (11)

In the general case where all field components are to be
considered, the equivalent of (10) is a vector relation
and ZS is the surface impedance matrix:(

Ey

Ez

)
= ZS

(
ωBy

ωBz

)
(12)

E. Fields in the vacuum region I-II

Equipped with this boundary condition, the vac-
uum problem can be solved on its own. The plasma
properties will enter its solution only via the quantity
ZS and the vacuum solution is therefore formally in-
dependent of the particular plasma model considered.
The general electromagnetic field in vacuum can be
decomposed into its TE (transverse electric) and TM
(transverse magnetic) parts with respect to a given
direction, here z. Maxwell’s equations then appear in
the form:

(
Bx

Ey

)
=

1

k0
2 − k‖2

(
−iω/c2 ik‖
ik‖ −iω

)(
ikyEz

dBz/dx

)
(13a)(

Ex

By

)
=

1

k0
2 − k‖2

(
−iω ik‖
−ik‖ iω/c2

)(
−ikyBz

dEz/dx

)
(13b)

d2

dx2

(
Ez

Bz

)
=
(
ky

2 + k‖
2 − k0

2
)( Ez

Bz

)
(14)

From this it can be seen that the problem can be
solved independently for Ez and Bz. The TM part

300



of the field, which has a longitudinal (along z) ~E com-
ponent does not couple to the plasma waves because
Ez = 0 in the plasma (see section II). Therefore, for
the simplified problem considered here, we can retain
the TE mode alone and ignore the field components
deriving from Ez.The solution for the two vacuum re-
gions is elementary:

Region I: Bz = AI cosh k‖x+BI sinh k‖x (15a)

Region II: Bz = AII cosh k‖x+BII sinh k‖x (15b)

where the A’s and the B’s are constants to be deter-
mined by the following boundary conditions:

• At the metallic wall x = −d: Ey = 0 (16a)

• The antenna is represented by an infinitely thin
current sheet of finite width w and infinite length.
This gives rise to a jump condition on the tangen-
tial magnetic field: [[Bz]]0 = −µ0jy (16b)

• and a continuity condition [[Ey]]0 = 0 (16c)

• At the plasma surface, x = 0: [[Zs]]a = 0 (16d)

These conditions are sufficient to determine the 4 con-
stants in (15a) and (15b). In particular, this gives the
relation between all field components and their source,
the current density at the antenna jy [12].

There is one additional condition, the continuity
of Ey (or Bz) at x = a that was not necessary to solve
the vacuum problem. It can be used to determine CIII

in Eq. (8) as all field quantities in the vacuum region
are now known.

F. Poynting’s theorem and antenna radiation

Let us consider in the vacuum region I-II an ar-
bitrary volume containing the antenna. Starting from
Maxwells equations, one can easily write down Poynt-
ing’s theorem [7] from which we get the complex ra-
diated power in region II for an antenna current ~jA:

P = −1

2

∫
V

~E · ~jAdV (17)

On the r.h.s. appears the work done by the elec-
tric field on the antenna current. Strictly speaking,
it should be zero because the antenna is a metallic
conductor on which the tangential electric field should
vanish. It is non-zero because the current distribution
on the antenna has been assumed rather than self-
consistently computed. This is known as the induced
e.m.f. method. Though it may appear rough, this
method usually gives good results if the assumed cur-
rent is a reasonable guess of the exact one. In more
sophisticated computations[16, 22], the current distri-
bution on the antenna is self-consistently determined.
A theory completely similar to the above one can
be done for waveguide[16] or aperture launchers. In
these cases, the incoming wave field distribution on the
aperture is given and the field reflected by the plasma

and surrounding structures is the result of the compu-
tation. Alternatively, the above formalism can be ap-
plied without changes if the aperture boundary condi-
tion is expressed as an equivalent current density[25].
It is to be observed that the quantity on the r.h.s. of
Eq.(17) has both a real and an imaginary part. The
real part is the power radiated by the antenna, while
the imaginary part is related to the reactive proper-
ties of the antenna, as we will see. We can compute
the former for our simplified model. First we rewrite
Poyntings theorem (17) in terms of the k‖ field spec-
trum using Parseval’s relation:

P = −1

2

∫
V

Eyjy
∗dV = − 1

4π

∫ ∞
−∞

Ey(k‖)jy(k‖)dk‖

(18)
The Fourier spectrum of the electric field Ey(k‖) is
evaluated in region II, in front of the strap (x = 0)
and is given by:

Ey(k‖) = ωµ0(g2 − ih2)jy(k‖) (19a)

with

g2−ih2 =
i sinh k‖d

k‖

sinh k‖a− iZS cosh k‖a

sinh k‖(a+ d)− iZS cosh k‖(a+ d)
(19b)

The antenna radiation spectrum can be obtained from
the Poynting theorem and taking the real part of it

<(P ) = −ωµ0

4π

∫
V

g2 |jy|2 dk‖ (20)

If we take the limit d→∞

<(P ) ∼ −ωµ0

4π

∫
V

k⊥

k⊥
2 + k‖

2 e
−2|k‖|a |jy|2 dk‖ (21)

This expression highlights one of the fundamental
challenges of low frequency wave heating, namely the
fact that ingoing waves undergo a strong evanescence
in the vacuum layer between the antenna and the
plasma and are furthermore confronted on their path
to the plasma bulk with brutal refractive index change,
leading to a strong reflection at plasma vacuum inter-
face. The k‖ spectrum of a given launcher is mostly
determined by the geometry of the launcher. For
a simple radiating strap of width w it is given by
k‖ ∼ π/w. Therefore the radiated power will decay
as exp(−2πa/w). This provides a simple rule to es-
timate the evanescence of the field launched by the
antenna in vacuum. If the launcher is made of an
array of identical elements spaced by Lz < w in the
toroidal direction and excited with a phase difference
∆Φ, then the typical parallel wave vector must be
taken as k‖a = ∆Φ/Lz. Evanescence will then be
stronger than in the previous case of an unphased
structure. One could think that working with an an-
tenna spectrum peaking at k‖ = 0 (monopole phasing)
could solve this problem. Actually realistic plasma
surface spectra displays large contributions occurring
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for k‖ < k0, but they are due to coaxial & surface
modes[14]. The coaxial modes correspond to TEM/z
or TE/z electromagnetic waves propagating between
the tokamak wall and the plasma column, which plays
the role of a lossy metal wall. These modes lead to
power deposition in the SOL and wall region.

G. Antenna coupling properties

The structure of the antenna modelled in the
present exercise is basically that of a strip-line, i.e. a
conductor running above an infinite conducting plane.
The field in such a strip line is known to have a TEM
(transverse electro-magnetic) structure, like a coaxial
transmission line. A TEM field has the property that
the electric and magnetic field structure in the trans-
mission line cross-section is the same as that respec-
tively of the electrostatic and magnetostatic field it
can sustain. Therefore, the antenna properties can be
computed in the electrostatic and magnetostatic lim-
its and used as in transmission line theory. We shall
recast the results obtained above in terms of strip line
characteristics. This formalism is often used in prac-
tice to represent properties of real ICRF antennas,
which structure is indeed close to that of strip lines.
The radiation impedance ZA of the antenna can be
obtained by equating the power flow to the same ex-
pression for a transmission line:

−1

2

∫
V

~E · ~jAdV =
1

2
(R+ iX) I2 (22)

where I is the total current flowing on the antenna,
R and X = −ωL being respectively the specific input
resistance and reactance of the line, and L being the
specific inductance. From the spectral form of Poynt-
ing’s theorem (17) we obtain:

1

2
(R− iωL) I2 = − 1

4π

∫ ∞
−∞

Ey(k‖)jA(k‖)dk‖ (23)

The previous equality constitutes the definition of the
two quantities R and L in the present antenna model.
The plasma enters their definition only through the
functions g2 and h2 (19b). No equivalent capacitance
C appears in Eq.(23) because we have dropped the
TM part of the field. It can however easily be obtained
by solving the TM vacuum field equations with the
boundary condition Ey = 0 at the plasma x = 0.
The three constants R, L, C completely determine
the properties of the transmission-line equivalent to
the antenna[11, 12] and are of primary interest for the
design of the transmission and matching system[2].

H. Radiated field

Using the additional boundary condition at the
plasma-vacuum interface, i.e. continuity of Ey, the
field in the plasma can also be computed and used to
determine the properties of the radiated far field [15].
In Fig. 3, the far field Poynting flux distribution over
constant phase surfaces is shown for a phased antenna

array in an ITER-like plasma. As the Poynting flux is
the RF power flux, this shows how phasing, by sending
the power at different parallel wave numbers sends it
in different spatial directions as well.

Figure 3: Distribution of the Poynting vector in the
far-field region for three different phase differences Φ
between successive straps of a 4-strap antenna array.
From[15].

I. State of the art

The theory presented in the previous sections is as
we said simple: it neglects feeders, poloidal antenna
inhomogeneity and plasma density profile. These
limitations were assessed in [12, 13] notably, and it
appears that such a simple model can fairly repro-
duce most of the coupling properties of more realis-
tic antenna models. Nevertheless the rigorous self-
consistent solution of the full boundary-values prob-
lem is a formidable task that can only be tackled
with numerical codes. A review of the early devel-
opment of sophisticated coupling codes can be found
in the review[21] to which one must add reference
to the RANT-3D code[20] describing coupling of re-
cessed antennas to plasma. Both in ICANT[22] and
in TOPICA[25] detailed current distributions are now
computed over all antenna parts. In parallel to the
development of these plasma coupling codes, sophis-
ticated commercial codes have been used to compute
and optimise the reactive properties of antennas in
vacuum or in the presence of a dielectric[23, 26, 29].
In this process, it was shown that an adequately cho-
sen dielectric can to some extent simulate coupling to
a plasma[26]. Antenna models have been compared
with success to experimental results in a number of
cases, both in the ICRF[20, 25, 17, 18, 27] and Lower
Hybrid range[19] and are used to predict the perfor-
mance of ITER antennas[28, 29].
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IV. POWER COUPLING FROM WAVES TO PAR-
TICLES

A. Absorption mechanisms

Once the wave has been launched in the plasma,
one could think that it can be damped simply because
the accelerated particles experience a drag due to col-
lisions. This is in general not the case. In the bulk of
a hot plasma, e.g. Te ' Ti = 5 keV, n = 5 1019 m−3
the collision frequency is

ν = 2.9 10−12n ln Λ T−3/2 = 20 kHz (24)

In electromagnetic theory the ratio ν/ω, (ω = 2πf) is
characteristic of the importance of dissipative effects
due to collisions with respect to reactive, i.e. wave
oscillation, energy. For small values of ν/ω, the mo-
tion is almost dissipation-less and huge fields and large
perturbations in the particle motion are necessary if
any significant amount of energy is to be damped in
the plasma. Equation (24) implies that, at frequen-
cies in the MHz range or higher, direct dissipation of
the wave by collisions will be negligible. In order to
magnify collisional absorption one has recourse to res-
onances. Under resonance conditions, a small excita-
tion will create either a huge response in the particle’s
motion (wave-particle resonance) or large wave-field
build-up (wave resonance). In Fig.1 the ”absorption
zone” is the region where such a resonance takes place
(the shape is of course only symbolic).

B. Wave resonances

Assuming that k‖ is for the essential determined
by the antenna system, and thus fixed, we shall char-
acterise the resonance by k⊥ → ∞. An example of
wave resonance is that of the fast wave, Eq.(7), when
u = k0

2ε⊥ − k‖2 = 0. We notice that, as we proceed
from the plasma edge to the plasma inside, e.g. along
the major radius direction (x), ε⊥ will vary because
both the magnetic field and the plasma density vary.
If the resonance is isolated from the cut-off, the wave
is absorbed at resonance [8].Typically we have both
a cut-off and a resonance in the plasma, with a re-
gio between them where the wave is evanescent. If
the distance between cut-off and resonance is not too
large, it is possible for part of the wave energy to tun-
nel through the evanescent region. This back-to-back
resonance and cut-off (assumed located at x = 0) can
be described by a simple wavenumber dependence of
the form

k⊥,FW = k∞
2 − α

x
≡ K2(x) (25)

with α a positive constant. Eq.(25) is often called
Budden equation [10, 8]. Except in the vicinity of x =
0, the wave is propagating with constant k⊥ ' ±k∞.
If the wave approaches the resonance from the left,
it will slow-down more and more (its group velocity

Figure 4: Wave-particle resonances: (a) Landau inter-
action; (b) cyclotron resonance

goes to zero) and come to rest at x = 0. In this sim-
ple WKB picture, all wave fronts coming from the left
pile-up at the resonance leading to a large increase in
wave amplitude. In addition, as the wave field oscil-
lates a large number of times before propagating any
significant amount of distance toward the resonance,
it is obvious that the effects of any damping mecha-
nism will be considerably magnified in the vicinity of
the resonance. A detailed integration of (25) in the
complex plane shows that the power is constant for
x 6= 0 and jumps abruptly at the crossing of the res-
onance. In the case of a cold or maxwellian plasma
the jump correspond to a decrease in power, i.e. to
wave energy absorption (by the plasma). This will
be shown explicitly for the case of the ion-ion hybrid
in a subsequent lecture [3]. Power is thus absorbed
at the resonance notwithstanding the fact that no ab-
sorption mechanism was explicitly considered in the
original equation (7).

C. Wave-particle resonances - Landau damping

Wave-particle resonances appear as resonant de-
nominators in the integrand of the expression of the ki-
netic dielectric tensor[5]. Physically, they result from
the fact that, in their reference frame, particles see a
constant electric field and are therefore uniformly ac-
celerated. Such a singular phenomenon can appear
only in an approximate treatment of the problem,
namely in the linearised approximation. For exam-
ple let us consider, as in Fig.4-(a), a particle moving
at the constant velocity v in an electric field directed
along v and propagating at the phase velocity ω/k.
The equations of motion of this particle are

m
dv

dt
= ZeE cos(kv − ωt); dx

dt
= v (26)

When we linearise the problem (v ' v0 +v1) we arrive
at the equation of motion

dv1

dt
=
ZeE

m
cos [(kv0 − ω)t+ kx0] (27)

where we have used in the expression for the field the
unperturbed particle motion x = x0 + v0t. The per-
turbed velocity v1 is oscillatory and there is no energy
exchange between the particles and the wave as long
as they have a different zero-order velocity v 6= ω/k.
But if they have the same velocity, the particle sees a
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constant electric field and is uniformly accelerated:

v1 =
ZeE

m
cos(kx0)t (28)

An alternative way of looking at the same phe-
nomenon is the Fourier transform approach, which
here reduces to looking only at the periodic solutions
of the problem:

v1 =
ZeE

m

ei(kv0−ω)t

i(kv0 − ω)
(29)

It can be seen that the singularity in the spectrum ap-
pearing at the resonance corresponds to the secular-
ity (∼t) in the time-representation. The correspond-
ing absorption is known as Landau damping and the
condition v = ω/k is called the resonance condition.
Whether the particle will be continuously accelerated
or decelerated depends on the phase of the wave at
the initial particles position kx0. To see if globally the
power will go from the wave to the particles or vice
versa, we have to make an average of the energy incre-
ment over initial phases and over the initial particle
distribution function[24], which leads to the classical
Laudau’s formula:

dW

dt
≈ −πωZ

2e2E2

2mk|k|
f ′(

ω

k
) (30)

We see that damping rate is proportional to the slope
of the unperturbed velocity distribution function at
the phase velocity of the wave. Landau’s formula (30)
shows that power is transferred from the waves to
the particles if there are more particles slower than
the waves than faster ones. This is the case for a
maxwellian. In the other case energy will go from
the particles to the wave, which will be amplified,
leading to instability (this process is sometimes called
”inverse Landau damping”). A distribution function
monotonous and decreasing constitutes therefore a
dissipative medium in the absence of collisions.

D. Wave-particle resonances - Transit time mag-
netic pumping

Another frequently quoted non-collisional absorp-
tion mechanism is transit time magnetic pumping or
TTMP. It is similar to Landau damping, except that it
is due to a propagating magnetic rather than electric-
wave modulation B1 = δB cos(kx − ωt) superposed
on the static field B0. This modulation gives rise to
the perpendicular force µ∇B acting on the particles
magnetic moment µ, according to the equation for the
motion along the magnetic field lines:

m
dv

dt
= −µ∇B (31)

which is similar to Eq.(26).

E. Wave-particle resonances - Cyclotron damping

Another type of wave-particle resonance is the cy-
clotron resonance (Fig.4-(b)). Assume that the par-
ticle is rotating at the cyclotron frequency θ = ωct
and that we apply a rotating electric field at the same
frequency ω = ωc with a component along the parti-
cle velocity v: the particles perpendicular energy will
increase linearly with time. This mechanism will be
discussed in details in [3].

This very sketchy analysis puts into light a weak-
ness of the linearised approach. Indeed what will hap-
pen in reality is not that uniform acceleration will
take place indefinitely but rather that the accelerated
particle will escape the resonant condition and thence
terminate the resonant process. Resonant absorption
can only continue if, once this particle has left the
interaction area, it is replaced by a fresh one that
can continue the resonant interaction. In terms of
distribution functions, this means that the wave will
produce velocity diffusion such as to empty the inter-
action region from particles, which in practice means
a flattening of the distribution function in the inter-
action zone. Once the distribution is flat the inter-
action has stopped. Collisions or other processes like
stochasticity counteract this tendency by restoring the
gradients. If the latter processes are strong, the dis-
tribution function can remain maxwellian, however,
generally speaking, the distribution function of a par-
ticle population heated by a resonance process is not
maxwellian.

V. QUASILINEAR DIFFUSION AND TAILS

In the previous sections, we have seen that the
RF power could be absorbed by the plasma via wave-
particle or wave resonances. In both cases, the wave
equation tells us that the wave will be damped while
travelling in the plasma but leaves open the question:
where is this power going to ?

A wave resonance corresponds to infinity in phys-
ical variables. At resonance, not only the wave vector
goes to infinity but field components as well, as is clear
from the solution of the wave Eq.(7), which can be
expressed analytically in terms of Bessel functions[8].
Such infinities are the sign that some smallness hy-
pothesis is violated and that additional terms should
have been retained in the wave equation. Retain-
ing these terms changes the resonance into a mode
conversion[9] whereby the initial low-k⊥ wave is con-
verted into high-k⊥ branch. Ultimately, the latter can
only be absorbed through collisional or non-collisional
(i.e. wave-particle resonance) processes.

The existence of absorption through wave-particle
resonance manifests itself by the presence of an anti-
hermitian part of the magnetised hot-plasma dielec-
tric tensor[5]. The classical expression of the dielectric
tensor is obtained by assuming that the unperturbed
distribution function is a maxwellian. We shall see
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that this is only an approximation and that the heat-
ing process only takes place with a sub-class of plasma
particles and necessarily leads to some deformation of
the distribution function of the heated population.

The corresponding theory is called quasilinear the-
ory and we will here derive the equations for the sim-
plest case, that of Landau damping in unmagnetised
plasma. We start with Vlasovs equation in one dimen-
sion:

∂f

∂t
+ v

∂f

∂z
+
ZeE

m

∂f

∂v
= 0 (32)

where E = E1 is the perturbed electric field (there
is no equilibrium electric field). We decompose the
distribution function into a slowly varying part (f0),
both in time and space, and a perturbed part (f1),
f = f0 + f1, and insert this expression in Eq.(32). In
order to isolate the slowly varying part of the distri-
bution function, we average this equation over time
(many wave periods) and space (many wavelengths).
Denoting by < . > this averaging operation, we ob-
tain:

∂f0

∂t
+ v <

∂f0

∂z
> +

Ze

m
< E

∂f1

∂v
>= 0 (33)

where we have used the fact that < E >=< f1 >= 0.
The second term in this equation is zero for uniform
plasma and we are left with an equation that deter-
mines the evolution of the equilibrium distribution
function under the action of the first-order perturba-
tions:

∂f0

∂t
= −Ze

m
< E

∂f1

∂v
> (34)

The second term in this equation is the quasilinear
term. In order to write it down explicitly, we must
solve the equation for the perturbation of the distri-
bution function f1 which we obtain by subtracting
Eq.(34) from Eq.(32):

∂f1

∂t
+ v

∂f1

∂z
+
ZeE

m

∂f0

∂v
= 0 (35)

Fourier-transforming in space and Laplace-
transforming in time (f ∼ exp[i(kz − ωt)]), we
easily obtain the solution of this equation:

f1 = − iZeE

m(ω − kv)

∂f0

∂v
(36)

Inserting this expression into Eq.(34), we obtain, not-
ing that the average of two oscillating quantities u(t)
and v(t) is < u(t)v(t) >= (1/2)<(uv∗):

∂f0

∂t
= −Z

2e2|E|2

2m2

∂

∂v
=
[

1

ω − kv

]
∂f0

∂v
(37)

This equation can be given a Fokker-Planck type form:

∂f0

∂t
=

∂

∂v

(
D
∂f0

∂v

)
; D = −Z

2e2|E|2

2m2
=
[

1

ω − kv

]
(38)

where D is the quasilinear diffusion coefficient. Note
that the imaginary part appearing in the expression
for D is nothing else than δ(ω − kv). This implies
that only the particles which are in resonance will be
pushed in velocity space by the heating process. If the
wave is directional, i.e. if the k‖ spectrum is asymmet-
ric, the deformation of the distribution function will
also be asymmetric, leading to the generation of cur-
rent by the waves, like in LH current drive.

VI. THERMALISATION

If Eq.(38) is solved as it is, it can lead to a
time-asymptotic stationary solution only if the energy
transferred by the wave to the particle is zero. There-
fore the stationary solution of Eq.(38) must exhibit a
quasilinear plateau, i.e. a zones around the resonant
velocity where f0 is flat (∂f0/∂v = 0). This ensures
that the heating power vanishes.

In a situation where there is stationary power
transfer to the plasma, the evolution equation for the
particles distribution functions, Eq.(38) is thus lack-
ing a loss term. This is the collision term, which we
denote by C(f0). It includes collisions on all parti-
cle species, including the heated ones. It also implies
that the distribution function of the heated species will
tend to relax to a maxwellian. From the different con-
tributions to C(f0), one can then compute the power
transfer to the different plasma components and the
resulting temperature increases. The complete equa-
tion for the evolution of f0 should thus be written

∂f0

∂t
=

∂

∂v

(
D
∂f0

∂v

)
+ C(f0) (39)

This collisional thermalisation process is in close rela-
tion with the slowing down of fast NBI ions discussed
in [6].
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