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ABSTRACT 

 
This lecture covers the practical features and 

experimental results of the three heating methods. The 

emphasis is on ion cyclotron heating. First, we briefly 

come back to the main non-collisional heating 

mechanisms and to the particular features of the 

quasilinear coefficient in the ion cyclotron range of 

frequencies (ICRF). The specific case of the ion-ion 

hybrid resonance is treated, as well as the polarisation 

issue and minority heating scheme. The various ICRF 

scenarios are reviewed. The experimental applications of 

ion cyclotron resonance heating (ICRH) systems are 

outlined. Then, the lower hybrid and Alfvén wave heating 

and current drive experimental results are covered more 

briefly. Where applicable, the prospects for ITER are 

commented. 

 
I. ION CYCLOTRON HEATING 

 
I.A. Introduction 

 
Before going in further details of heating 

mechanisms, it is important to recapitulate the order of 

magnitude of the different quantities characterising the 

plasma and the RF. A table of plasma parameters (Table 

1), typical of moderate plasma performance in a machine 

like JET, was given earlier1. Two important parameters 

that characterise the collisionality of the plasma are to be 

added to complete the picture: the ion an electron collision 

frequencies: e10kHz, i100Hz. A JET-type machine is 

characterised by the following parameters:  

R0 = 3m, 2R0 ≈ 20m; ap = 1.5m, 2ap = 10m. 

In the light of these numbers, one sees that the time for a 

cyclotron gyration is extremely short: 10ps for an electron, 

40ns for an ion. During this single gyration, the electron 

travels 0.4mm in the toroidal direction and the ion 2cm. It 

takes 1s to an electron to complete a toroidal turn around 

the machine, 40s to an ion. During this turn, an electron 

has performed 50,000 cyclotron gyrations, an ion 1,000. 

This means that gyro motion is an extremely fast process 

as compared to transit times across any macroscopic area. 

Equivalently, the gyro radii of electrons (0.05mm) and of 

ions (3mm) are small as compared to plasma size. The 

plasma is nearly non-collisional: the electron mean free 

path is 3km and the ion one 5km, or, respectively, 150 and 

250 toroidal revolutions.  

 

The following parameters are typical of an ICRF 

system: 

 frequency: f  10-100 MHz 

 Power: 2 MW/antenna strap 

 Voltage: 10-50 kV at the antenna 

 Antenna current: IA   1 kA 

 Central conductor: width ≈ 0.2m, length ≈ 1m, 

distance to the plasma 5cm, to the wall 20cm 

 Typical RF electric field: 20kV/m 

 Typical RF magnetic induction: 10-3T 

 

ICRF antennas are quite often built as boxes enclosing one 

or several central conductors to whom the high voltage is 

applied. Such a central conductor is also called a strap. 

The maximum voltage that could be applied to an antenna 

operating in a tokamak, in the presence of plasma, lies 

around 45kV. The ratio of voltage to current and the 

power coupling capability of an antenna are determined by 

the geometry of the antenna and the plasma edge 

properties
1
. The electric field at the antenna is easily 

evaluated by dividing the input voltage by the antenna 

length. This is valid for the field component polarised 

along the antenna; other field components can be much 

higher in the vicinity of the antenna feeding point. Except 

for possible focusing effects, the field inside the plasma is 

lower than at the antenna, because k|E|2 is nearly constant 

and k is roughly proportional to n . The typical RF 

magnetic field is easily computed using ampere’s law: 

2dH=IA where d is typical of the distance over which the 

magnetic field can spread. These electrostatic- and 

magnetostatic-type estimates have a meaning due to the 

fact that the vacuum wavelength is large as compared to 

the antenna dimensions:  
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0 = c/f ≈ 10 m (30 MHz). 

 
I.B. Linearity 

 

These numbers show that the RF causes only a small 

perturbation of the particle trajectory. First, the RF 

magnetic field is much smaller than the static one:  

BRF ≈ 10-3 T « B0 ≈ 3 T.  

Second, the RF electric field ≈ 20 kV/m is also much 

smaller than the vB field associated with the ion’s (and 

even more electron’s) thermal motion: VtiB0≈1.5MV/m. 

Third, we shall show below that the perturbation of the 

parallel motion is also small. Let us write the equation of 

motion of a particle in the RF field, decomposing the 

motion into an unperturbed (thermal) part labelled 0 and a 

perturbed part: vv0+v 

m
dv

0

dt

dv

dt









  Ze(E v0  B0  v0 B v  B0  v  B)  (1) 

Subtracting the unperturbed part of this equation  

m
dv

0

dt
 Ze v0  B0  (2) 

which describes the unperturbed cyclotron motion leaves 

us with the perturbed part of the equation of motion. 

m
dv

dt
 Ze(E v0  B v  B0  v B)  (3) 

In the r.h.s parenthesis the last term is clearly negligible as 

compared to the 3rd one. We thus arrive at the following 

equation, which is linear in the perturbed field amplitude: 

m
dv

dt
 Ze(E v0  B v  B0)  (4) 

Finally, we can estimate the correction to the parallel 

uniform motion due to the RF field. Taking the parallel 

component of Eq.(3) and d/dtci , we get for an ion 
mcv//  Ze[E//  (v0 B)// ] (5) 

or, in order of magnitude 

v// 
E//

B
0

or  Vti
B
RF

B
0

 (6) 

Thus, in any case the RF-induced particle quiver velocity 

is small as compared to the thermal (unperturbed) ion 

velocity. In summary, the corrections to the particle’s 

trajectory due to the RF field are indeed small, and the 

linearisation is justified.  

 

Although Eq.(4) is linear in the fields, it is not at all 

linear for the unknowns r and v. Indeed, the electric field 

depends non-linearly on the particle position r. However, 

we have seen that the RF fields only cause small 

perturbations to the particle trajectories. Therefore, we can 

neglect these small deviations in the evaluation of the 

electromagnetic field at the particle location and write 
E(r) E(r0); B(r)B(r0 ) (7) 

with dr0/dt = v0 and v0 is the solution of the unperturbed 

equation of motion Eq.(2). Then the equation determining 

the velocity perturbation is 

m
dv

dt
 Ze[v B0  E(r0) v0  B(r0)]  (8) 

This is now a linear equation that can be solved explicitly 

if the unpertubed trajectories (r0, v0) are known explicitly. 

The next step in the solution of the problem is to 

decompose the zero-th order motion into a guiding centre 

motion rG and a gyromotion : 

r0 = rG +   

and to expand around the guiding centre motion:  

E(r0 )
(.)nE 

r
0
r
G

n!n0



  (10) 

This procedure is known as the small Larmor radius 

expansion. In general geometry this development can 

become quite heavy
2
, but in straight geometry, it can be 

performed explicitly. In the latter case (uniform plasma), 

the decomposition of the motion, Eq.(9) is exact and the 

expansion Eq.(10) can be expressed in terms of Bessel 

functions, see Eq.(13, 16) of ref.
3
. Like in the case of 

Landau damping
1
, the explicit integration of the linearised 

equation of motion Eq.(8) can, in some cases, lead to 

secular solutions, corresponding to resonant denominators 

in Fourier space
4
. The same denominators are found back 

under the velocity integral in the expression of the full hot 

conductivity tensor
3
, leading to the general resonance 

condition  
 nc  k//v//  0; n 0,1,2,... (11) 

 
I.C. The cyclotron absorption mechanisms  

 
I.C.1 Resonances due to non-rotating fields 

 

If we look at the n=0 contribution to the conductivity 

tensor Eq.(20) in ref.
3
, we see that only the lower right 22 

part of the Sn matrix is non-zero. For a uniform electric 

field (kE=E/x=0), only the zz term survives. It 

correspond to resonant parallel acceleration by the parallel 

electric field, i.e. to Landau damping. The three other 

terms require, at least, a gradient of the electric field 

(E/x≠0). By computing the expression E
*
..E, 

(proportional to the absorbed wave power) for the case 

where only Ey is present, it is easy to see that this quantity 

is proportional to 

(kEy)
2
 = (Bz)

2
 

If we assume Ey to be linear, we thus have a case of 

acceleration by a uniform Bz field propagating in the z 

direction with  k//v//. We have seen
1
 that the resonance 

mechanism in this case is transit time magnetic pumping 

(TTMP). More detail about this and about the interplay 

between Landau damping and TTMP in the case both Ey 

and Ez differ from zero, can be found in the book of Stix
5
. 
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Landau damping and TTMP are not important 

mechanisms for the ions in the ICRF because k//Vth is 

usually much smaller than ci , as can be seen from 

Table 1 and k// estimates
1
. For the electrons, on the 

contrary, they are the only damping mechanisms in this 

frequency range. As they correspond to parallel 

acceleration, they are of primary importance for the fast 

wave current drive applications. 

 

I.C.2. Resonances due to the left-handed component of the 

field. 

 

This is the case where the wave has the same 

handedness as the ions and the resonances correspond to 

n>0 in Eq.(11). If n=1, we have the case of the 

fundamental cyclotron resonance, which was discussed 

already
1
: 

  c  k//v//  (12) 

Because the Doppler shift k//v// is small, this requires that 

the operating frequency be rather close to the ion 

cyclotron frequency. Looking at the expression of Sn in 

ref.
3
, we see that such a resonance can be caused by a 

uniform field (kE=E/x=0). On the contrary, for second 

harmonic damping (n=2) to exist, the same expression 

shows that a gradient of the electric field is required. 

Similarly, higher harmonic damping requires the existence 

of non-vanishing higher derivatives of the electric field. 
 

While it is easy to imagine how the fundamental 

cyclotron resonance works, it is much harder to visualise 

the reason why a particle rotating at the frequency c can 

resonate with a wave that is rotating at twice this 

frequency! In order to understand how this happens it is 

useful to come back first to the fundamental resonance and 

look at the simpler situation where the wave propagates 

(or is non-uniform) in the x-direction while the E-field is 

polarised in the y-direction. The principle is shown on top 

of Fig.1. The particle travels from left to right and at the 

initial moment t=0, I assume that the electric force is in 

phase with the particle velocity. After a quarter period, if 

the field oscillates at the cyclotron frequency, =c, the 

field is zero, after half a period it is negative, etc. 

Therefore, either the force is in phase with the particle 

motion, or it is zero and over one cyclotron period, the 

particle experiences a net acceleration in the direction of 

its motion.  If, with the same uniform field distribution, the 

field varies at twice the cyclotron frequency =2c, after a 

quarter period, it has changed sign, points in the negative y 

direction and is perpendicular to the particle’s velocity. 

After half a cyclotron period, its phase has varied of 2, it 

is again positive, points out of the paper in the direction 

opposite to the particle’s velocity and so on. Hence, over a 

cyclotron period, the average force exerted on the particle 

is zero, there is no net acceleration and no resonance. 

However, if the field varies linearly in space, as shown on 

the bottom of Fig.1, at the same time as it alternates sign, 

the particle moves from one side of the gradient to the 

other, therefore keeping in phase with the electric force 

and experiencing a net acceleration over one period, as 

shown. It is therefore the interplay between the field 

periodicity and the sampling of the field non-uniformity by 

the particle that allows resonance at the cyclotron 

harmonics. 
 

I.C.3. Resonances due to the right-handed component of 
the field. 

 

This type of resonance, corresponding to n<0, is 

somewhat counter-intuitive as the field rotates in the 

direction opposite to the particle. However the resonance 

condition shows that, in order to come into resonance, the 

particle must have a very large velocity: 

v// 
  n

c

k
//

 Vti  (13) 

 

Fig. 1.  Mechanism of the fundamental (top) and second 
harmonic  (bottom) resonance. The ion moves in 
the z-direction and the projection of its helical 
motion on the (x,z) plane is shown: solid line, 
above the plane; dotted line, below. The electric 
field  distribution along x is shown at  quarter 
periods of the cyclotron frequency. The 
direction of the electric force F at the particle’s 
position is also indicated.  
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One can then understand the resonance process as 

follows. Let us start with a particle with zero parallel 

velocity and a right-hand polarised field at frequency  

slightly larger than ci and positive phase velocity /k//>0. 

The particle sees the field rotating slightly faster than 

itself, in the opposite direction. Then if the particle starts 

to move at a speed v// >0, in the reference frame moving at 

the same velocity, the field is now rotating at the slightly 

lower frequency ’=-k//v//. If v// is large enough, this 

frequency may equal ci but the ion and the field are 

rotating in opposite directions. Then, if the particle’s 

velocity becomes much larger, the field may become 

stationary -k//v//=0: the particle is gyrating in a stationary 

field. This cannot give rise to a resonance. If v// is still 

increased, -k//v//<0 and the wave field will start to rotate 

in the left-handed direction. Still increasing the particle’s 

velocity, we can come to the situation where -k//v//=-ci 

which means that the field is left-hand polarised and 

rotating at the cyclotron frequency, thereby causing 

resonant acceleration. This absorption mechanism is 

generally negligible for particles belonging to the thermal 

population in the plasma. However, for the much faster 

particles belonging to a high-energy tail, either created by 

the RF itself, or by NBI or for -particles, this mechanism 

may not be negligible at all. Even more so, as we shall see, 

as the right-hand field component tends to dominate in the 

fast wave, in the vicinity of resonances.  

 

I.C.4. Quasilinear diffusion coefficient 

 

Ion cyclotron heating tends to create high-energy tails 

in the distribution function of the heated particles. For 

heating at the n-th cyclotron harmonic, the diffusion 

coefficient is of the form: 

D Jn1E  Jn1E

2

 Jn1(
k

v



c

)

2

E
2

 (14) 

where E+ and E- are, respectively, the left-hand and right-

hand components of the electric field: 

E 
1

2
(Ex  iEy ); E 

1

2
(Ex  iEy )  (15) 

One notices the presence of a right hand component 

contribution in the diffusion coefficient. For not too fast 

particles in the FW field, this contribution is negligible 

because the argument of the Bessel functions is small. 

This is not necessarily the case for fast ions. In the case of 

the thermal population, one can take only the first term of 

the power series expansion of the Bessel functions, and we 

get: 

 Fundamental: D K E
2

 with K a constant (16.1) 

 Second harmonic: D
k

v



c

2

E
2

 (16.2) 

 n-th harmonic: D
k

v



c

2(n1)

E
2

 (16.3) 

A first conclusion to be drawn from these expressions 

is that, as krL is a small quantity, the diffusion coefficient 

(hence the strength of the heating) strongly decreases with 

the harmonic number. Second, fundamental heating pushes 

all particles with the same strength irrespective of their 

velocity: the diffusion coefficient is independent of 

velocity. On the contrary, harmonic heating tends to 

accelerate more the faster particles. A consequence of this 

last observation is that harmonic heating tends to create 

tails at higher energy than fundamental heating. In the 

same vein, harmonic heating tends to interact more with 

faster particles like beams or alphas.  

 
I.D. The FW dispersion and polarisation  

 

The FW equation was given in section II.C of ref.
1
. 

We shall now specialise the expressions of the dielectric 

tensor components
3
 to the ICRF where 

  ci « pi « pe, ce, (17) 
We obtain 

S 1 
 pe

2

 2 
ce

2


 pi

2

 2 
ci

2


i

 
 pi

2

 2 
ci

2
i

  (18) 

D 

ce




pe

2

 2 
ce

2



ci




pi

2

 2 
ci

2
i




 pe

2

ce


 ci



 pi

2


2
 ci

2
i

 


ci

 pi

2


2
 ci

2
i



 (19) 

The first line of Eq.(12) of ref.
1
 gives the relation linking 

Ex and Ey and can be used to compute the ratio of the left- 

to right-hand components of the electric field: 

Ex  iEy

E
x
 iE

y


D (S  N//

2
)

D (S  N
//

2)
 (20) 

Let us now consider the case of a single ion species. 

Eqs.(18-19) become 

S  
 pi

2

 2 
ci

2
 ;  

ci

D S



   (21) 

and 

Ex  iEy

E
x
 iE

y



1



ci

 N
//

2 / S

1


 ci

 N
//

2 / S

 

ci

 
ci

 (22) 

The last approximate equality follows from  

N//

2
/ S 

N//

2
( ci

2


2
)


pi

2
 1  (23) 

The striking feature of the result Eq.(22) is that, at 

cyclotron resonance =ci , in a plasma with only one ion 

species i, the left-hand polarised component of the wave 

vanishes. Thus the cyclotron resonance mechanism cannot 
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work because the resonant wave component is absent! 

Incidentally, this shows explicitly why there is no 

singularity of the fast wave propagation at the cyclotron 

frequency
3
: the resonant wave component is blocked by 

the resonance and all the power is transferred to the other 

component. This dramatic result can be avoided by 

heating a small amount of ions of one species in a plasma 

with ions of another species. This is called the minority 

heating scenario. Consider, for example a plasma of 

deuterium with a minority of hydrogen. Then the wave 

polarisation is determined by the majority component 

while the wave frequency is the cyclotron frequency of 

hydrogen. Inserting =cH=2cD in Eq.(22) yields 

Ex  iEy

E
x
 iE

y


 

cD

 
cD


2

cD


cD

2
cD


cD


1

3
 (24.1) 

This is the most widely used minority heating scenario, 

denoted D-(H) to indicate that a minority of H is heated in 

a majority D plasma. This concept of heating a given 

species in a mixture can be extended to other mixtures. 

For example in a reactor, one can heat D at the 

fundamental in a D-T mixture. Then, for not too large D 

concentration, the ratio of polarisations is: 

Ex  iEy

E
x
 iE

y



cD


cT


cD


cT


1

5
 (24.2) 

 

This explanation has the advantage of simplicity and 

to some extent gives a good picture of reality. The shrewd 

reader would however notice by working out himself the 

complete polarisation expression for a mixture of ions that 

even in this case the left-handed polarisation vanishes at 

each cyclotron harmonic! The final explanation can only 

be obtained by taking hot-plasma (absorption) effects
3
 into 

consideration and noting that in a mixture the wave left-

handed component has a significant magnitude over a 

much wider region around the cyclotron harmonic than in 

the single-ion case. This is of course particularly evident 

when only a small minority is considered. This allows 

non-collisional damping at Doppler-shifted frequencies to 

remain efficient over a much wider range as compared to 

the single-ion case. 

 

Another way to avoid the polarisation problem is to 

work at harmonics of the cyclotron frequency. Then  

Ex  iEy

E
x
 iE

y


n

ci


ci

n
ci


ci


n 1

n 1
 (24.3) 

however, as we saw in Eq.(16.3), the damping strength 

strongly decreases with harmonic number. 

 
I.E. The ion-ion hybrid resonance 

 

Let us now consider, like in ref.
3
, the case of a 50%-

50% mixture of D and T.  

nD = nT = ne/2 (25) 

Then, taking into account the fact that cD = cH/2 and cT 

= cH/3, and defining 

pH  2 pD  3pT  (26) 

we can recast the expressions for S and D, Eq.(18-19) as 

S 
2 pH

2


cH

2  4 2


3 pH

2


cH

2  9 2


5pH

2
( cH

2
 6

2
)

(
cH

2 4 2 )(
cH

2  9 2)
(26.1) 

D



cH

4 pH

2


cH

2  4 2


9 pH

2


cH

2 9 2









 (26.2) 

Eq.(26.1) clearly shows that S will vanish -which is the 

condition of wave resonance for perpendicular 

propagation
3
- when cH  6 . This is the ion-ion 

hybrid resonance condition for a 50%-50% D-T plasma. 

One can likewise obtain this resonance condition from the 

FW wavevector Eq.(14.2) of ref.
1
, for the case of purely 

perpendicular propagation (k//=0): 

kFW
2

 k0

2
S 

k
0

2D 
2

k
0

2S
 k0

2
5 pH

2


cH

2

(
cH

2  5.76 2 )

(
cH

2 6 2 )
 (27) 

Note that the general (k//≠0) resonance condition of the 

FW is  

k0

2
S k//

2
 0  (28) 

and is not one of the general resonances A=0 discussed in 

ref.
3
. In fact, it does not exist in the full cold-plasma 

dispersion relation, where a conversion between the FW 

and the slow wave (Eq.(62) of ref.
3
) takes place instead of 

a resonance. The FW resonance Eq.(28) arises because of 

the neglect of the slow wave. 

 

 
Fig. 2.  Variation of the FW’s wavevector(squared) over 

the plasma cross-section. The plasma density is 
assumed uniform. The ion-ion hybrid is located in 
the centre x=0. 
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We are now in a position to show that the model 

equation Eq.(38) of ref.
1
 is a reasonable simplified 

resonance model. For the specific case of the ion-ion 

hybrid, and using Eq.(27) for simplicity, we shall also be 

able to show how to determine which sign to use in 

Eq.(43) of ref.
1
. In a tokamak, the toroidal magnetic field 

decreases as 1/R, R the major radius. Accordingly, the 

FW’s wavevector varies across the plasma. Such a 

variation is shown in Fig.2, in the vicinity of the ion-ion 

hybrid resonance and assuming that the plasma density is 

constant for simplicity. Let us define the resonance 

location as R= R0 and 

cH0

2
 6

2
;  cH 


cH0
R

0

R


cH0
R

0

R
0
 x

 (29) 

With these definitions, we can re-write the resonant 

denominator 

cH
2
6

2



cH0

2 R
0

2

(R
0
 x)2

 6(  i)
2
 (30) 

where we have introduced a small imaginary part to the 

frequency, in agreement with the causality rule
3
. In the 

vicinity of the resonance (x/R«1), 

cH
2
6

2
 

12 2

R
0

x 
i


R0









 (31.1) 
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2
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2

60 2

R
0

(x  i



R

0
)

 (31.2) 

This proves our statements, as the singularity is indeed 1/x 

and the pole is slightly below the real x-axis. It is thus 

circled clockwise while performing the x-integration in 

Eq.(42) of ref.
1
, which implies that the negative sign has to 

be taken in Eq.(43) of ref.
1
, and that, given the sign in the 

r.h.s. of Eq.(31.2), the wave energy is indeed absorbed –

rather than emitted- at the crossing of the resonance. 

 
I.F. Scenarios 

 

In present-day machines, the most usual scenario is 

fundamental heating of a hydrogen minority in a D 

plasma, or D-(H). Other mixtures have been tried 

successfully, like D-(
3
He), or even heavy minority 

scenarios like H-(D), H-(
3
He). Second and third harmonic 

heating, like f=2fcH or f=3fcD, have been used, either as a 

majority or as a minority scenario. Mode conversion 

heating was proven to heat efficiently electrons, and FW 

current drive based on Landau-TTMP damping has been 

shown to follow theoretical expectations. In D-T plasmas, 

nearly all possible scenarios have been tested, T-(D), 

D-(T), second harmonic T, mixed f=2fcT and fundamental 

minority 
3
He, D-T-(

3
He) and even mode conversion. 

Finally, let us note that direct ion Bernstein wave launch 

experiments have also been performed, with limited 

success in terms of power coupling, but inducing in some 

cases poloidal rotation and transport barrier formation. A 

good survey of these experiments, together with a large 

number of references is given in ref.
6
.  

 
 
I.G. Database and applications 

 

High power ICRH systems have been installed in a 

large number of machines. A maximum power of 22MW 

was coupled to the plasma in JET
7
. ICRH power was 

injected in various sorts of plasmas, including L-mode, 

ELM-free and ELMy H-mode, RI-mode
8
. In D-T, a record 

steady-state fusion Q performance (Q=0.22) was achieved 

with ICRH alone in JET
9
. At the occasion of the 

compilation of transport databases for ITER, it was noted 

that no significant differences in heating efficiency can be 

observed between the RF (ICRH and ECRH) subset and 

the rest of the database
10

. Although it is generally the case 

that the heating efficiency is equivalent for all auxiliary 

heating methods, there are cases where differences are 

observed. They are usually interpreted as resulting either 

from differences in power deposition profile or from a 

different impact on confinement. As an example of the 

latter, the choice of heating method – H/D co/counter NBI 

/ ICRH- D-injection, can have definite impact on the 

achievement and quality of the RI-mode on TEXTOR
11

. 

 

Like in the case of NBI, the neutron production rate 

furnishes an indirect measurement of the tail created by 

the RF. Comparisons with theoretical predictions indicate 

that the tail formation process is fairly well understood
12

. 

Fast ion energy content
13

 and direct tail measurements
14

 

provide similar indications. Other comparisons have 

addressed the question of ion/electron power partition and 

power deposition profile
15,16

. The interaction of ICRH 

with beam-injected fast-ions was also investigated, in 

particular in relation with third harmonic heating and RF-

induced fast particle diffusion
17

. Good agreement with 

theoretical predictions was observed. FW electron current 

drive has been tested in DIII-D and Tore-Supra, showing 

good agreement with the expected Te-scaling
6
. Minority-

ion current drive, by flattening or steeping the current 

density profile allowed control of the sawtooth 

frequency
18

. ICRF systems have recently found new 

applications in the field of plasma production in presence 

of a static magnetic field. The plasmas produced in this 

way could be used for efficient wall conditioning or for 

start-up assistance
11,19,20

. 

 

An ICRF system has been designed for ITER
6
, which 

would couple 50MW through three ports. A rather large 

voltage is required (42kV) because the coupling is 

relatively low due to the large distance between the 

antenna and the plasma. 
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II. LOWER HYBRID HEATING 

 

In the lower hybrid (LH) heating domain, two waves 

coexist: the fast and the slow wave. For N// =0, they are 

uncoupled and evanescent and only the FW exhibits a 

resonance at the LH. If N// is increased (up to N// ≈1), both 

waves become propagating at the edge but merge some 

distance inside the plasma (confluence). Further in, both 

are evanescent (complex conjugate k
2
) and the central 

part of the plasma is not accessible to the waves from the 

edge. It is only when the accessibility condition Eq.(65) of 

ref.
3
, is satisfied that the two waves uncouple and 

propagate both inside the plasma. The accessibility 

condition implies that the launcher must be designed such 

as to launch waves with a parallel wavelength shorter than 

//  c /(Nc f )  (32) 

This is obtained by using an array of phased waveguides 

called the grill21. 

 

The original concept of LH heating is to launch the 

slow wave (SW) at a frequency below the central value of 

the LH resonance. The SW then propagates up to the LH 

resonance and is absorbed there. It however became 

apparent from experiments that usually the wave tended to 

be absorbed by electron Landau damping before having 

reached the resonance. This is largely due to the cone 

propagation effect
3
. Indeed, the wave rays tend align to the 

magnetic field as the wave propagates inwards, eventually 

becoming exactly parallel at the LH resonance. 

Accordingly, the waves tend to circle around the plasma 

centre and to damp there. This efficient electron 

absorption is now exploited and recent LH heating 

experiments operate at frequencies above the central LH 

frequency, so that there is no longer a wave resonance 

inside the plasma and all the power goes to electrons. With 

an asymmetric N// spectrum, LH heating is used as a 

current drive method. The cone behaviour is responsible 

for the main problem in applying LH to reactor-size 

machines, namely that the LH wave energy tends to 

propagate peripherally around the plasma and to deposit 

its energy away from the plasma centre. More precise 

information about the location where the power is 

deposited in toroidal geometry can be obtained using ray-

tracing techniques22.
 

 

LH was first used as a heating method. The 

corresponding experimental results have been nicely 

summarised in a plot showing the different heating 

regimes in FT23. At low density, LH waves heat electrons. 

As the density is increased, electron heating fades away 

and ion heating sets in, creating ion tails. At still higher 

density, ion heating also decreases and disappears while 

parametric decay activity sets in. The different damping 

mechanisms of LH waves and the interpretation problems 

of experimental results, such as the spectral gap problem, 

are described in the book by Cairns24. Presently, the main 

application of LH is non-inductive current drive; it 

constitutes today the best, experimentally proven, current 

drive method. In large hot plasmas like ITER or reactors, 

the LH waves can usually not reach the centre. 

Accordingly, LH in ITER25 is mainly seen as a tool for 

controlling the current profile by off-axis current drive in 

advanced scenarios26. It can also be used for saving volt-

seconds in the ramp-up phase of the plasma current. 

 
III. ALFVEN WAVE HEATING 

 

In the Alfvén wave domain, two types of cold-plasma 

waves can propagate
3
,  

=k//cA     the shear Alfvén wave (SW) (33.1) 

=k  cA the compressional Alfvén wave (FW) (33.2) 

The first of these relations implies that the shear Alfvén 

wave can propagate only along the field lines.  

 

Compressional 
Wave

Antenna

Shear wave

=k V  

 
Fig. 3.  The principle of Alfvén wave heating. Poloidal 

cross-section of the tokamak. 
 

In an inhomogeneous plasma there is only one 

surface, close to a magnetic surface, where for a given N// 

the shear wave dispersion relation Eq.(33.1) is satisfied. 

So, the shear Alfvén wave can propagate only on that 

surface, as shown on Fig.3: it is trapped on that surface. 

Therefore, the idea is to launch from the outside the 

compressional Alfvén wave, which can propagate in all 

directions and reach the Alfvén resonance. Once the 

power is coupled to the shear wave, it stays on the 

magnetic surface and dissipates there. Note that the 

wavelength of the compressional wave is of the order of 

1m. This means that, for 1m wide or narrower antennas, 

most of the wave spectrum will be evanescent with an 

evanescence length of the order of the antenna size
1
.  

 

From the experimental point of view the most 

extensive experiments and analysis of Alfvén wave 

heating have been performed on the TCA tokamak27 

(R0=0.6m). Although antenna coupling and general wave 

behaviour appeared to be in agreement with the theory, 

generally speaking little plasma heating was observed 
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while the main effect of the RF was a large density 

increase, sometimes interpreted as an increase in the 

particle confinement time. In view of these disappointing 

results there have been few attempts to apply Alfvén wave 

heating to large tokamaks and this method is usually not 

mentioned for the heating of ITER or reactors. However, 

there has been some renewed interest in this field as the 

conversion to the kinetic Alfvén wave may induce poloidal 

shear flows, and possibly generate transport barriers
28

. 

 
IV. FURTHER READING 

An excellent introductory overview of the different 

wave heating methods is given by Cairns24. A very 

complete work on plasma waves is that of Stix5. 

Brambilla
29

 reviews the same subject with finer detail and 

a more direct view toward practical applications. In 

particular, many dispersion relation features are discussed 

in detail. 
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