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ABSTRACT

In the present paper a very brief introduction is pro-
vided to the theory of kinetic waves relevant to the de-
scription of wave heating in fusion machines and fo-
cussing mostly on radio frequency or ion cyclotron res-
onance frequency waves in tokamaks. The text starts
by sketching the basic philosophy underlying the stan-
dardly adopted methods, describing the interaction of a
single particle with a given wave and the assumptions
typically made to arrive at a trustworthy description of
the energy exchange, and ends by discussing some of the
subtleties of the modeling of wave-particle interaction in
inhomogeneous magnetized plasmas. None of the top-
ics will be treated in full detail. Hence, by no means,
this text is meant to be all-inclusive. Rather, it aims at
providing a framework that should allow understanding
what are the difficulties involved, leaving out the de-
tailed derivation of the expressions as well as subtleties
such as relativistic corrections. The interested reader is
referred to the provided references - and the references
given therein - for more in depth information.

I. INTRODUCTION

The interaction between charged particles and elec-
tromagnetic waves can be looked at from 2 vantage
points: From the point of view of the waves ’plasma
heating’ is a process by which they lose energy. The
relevant equation to describe this is the wave equation,
derived from Maxwell’s equations. From the point of
view of the particles the same process is viewed as a
gain of energy. The relevant equation to describe this
second interpretation of the same physical phenomenon
is the Fokker-Planck equation, derived starting from the
kinetic equation of state. A proper description of the
phenomena requires that these 2 aspects are described
on the same footing, which is not at all straightforward
and which only starts to be done now that powerful
computers are increasingly available.

Figure 1: Wave-particle interaction: wave point of view
(left: fast dynamics) vs. particle point of view (right;
slow - net - dynamics) and scheme for modeling both
aspects self-consistently. The wave field (left) is plot-
ted in a toroidal cut of a tokamak, the RF heated ion
distribution (right) is plotted in terms of the velocity
components at the low field side crossing of the equa-
torial plane for a prescribed radial position.

The kinetic description of waves in plasmas typi-
cally starts from the equation

df

dt
= C + S − L (1)

in which f is the distribution function of the charged
particles being studied, and the right hand side de-
scribes how the distribution equation evolves under
the influence of collisions the particles undergo, and of
particle injection (S=source) and particle loss (L). In
the high frequency domain and for a sufficiently strong
magnetic field, the left hand side is dominated by pro-
cesses on a vastly different time scale than that of the
net effect of collisional interaction and particle loss or
gain. Hence on the fastest time scale of the problem the
right hand side is negligibly small and can be neglected
to a first approximation. The above equation then sim-
ply states that the number of particles is conserved in
phase space: Particles can move about and gain or lose
energy - which causes a stretching or squeezing of the
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volume in which a given number of particles resided at
a given initial time - but the number of particles in the
stretched phase-space volume is always conserved.

II. BASIC PHILOSOPHY [1-11]

II.A. General Formulation

In general, the orbits of particles immersed in elec-
tromagnetic fields are not integrable i.e. their motion
cannot be described in terms of constants of the motion
but is stochastic and thus ergodically covering parts of
phase space. On top of that, charged particles in mo-
tion constitute a current themselves and thus influence
the electromagnetic fields in the fusion machine. Hence,
the RF plasma current needs to be carefully accounted
for when solving Maxwell’s equations. Describing the
impact of the charged particles on the fields and the
back reaction of the fields on the particles involves the
challenging task of solving a set of coupled nonlinear
equations in 6 independent variables in phase space. As
the temporal and spatial scales cover a range of many
orders of magnitude (ion cyclotron motion involves fre-
quencies in the radio frequency - megaHertz - domain
while net collisional interaction occurs on a time scale
of hundreds of milliseconds in a tokamak such as JET,
or seconds in ITER; the macroscopic dimensions of such
fusion machines is several meters, while the ion Larmor
radius ρ is of the order of a few millimeters) making
simplifications is a necessity. The drawback of the wide
range of scales is thereby turned into an advantage, al-
lowing to set apart phenomena and tackling processes
happening on drastically different scales separately.

It is instructive to have an idea of the relative mag-
nitudes of various relevant quantities to understand
why the ’quasi-linear’ approach and other commonly
made approximations make sense. For typical JET pa-
rameters in a D majority plasma (temperature of 5keV ,
density of 5 × 1019m−3, magnetic field 3T , major ra-
dius of 3m and minor radius of 1m), the ion cyclotron
frequency of the D ions is 23MHz and the electron cy-
clotron frequency is 80GHz, the ion thermal velocity is
5×105m/s so the typical ion Larmor radius is 3mm, the
electron thermal velocity 3×107m/s so the electron gy-
roradius is 0.05mm, the ion collision frequency is 100Hz
and the electron collision frequency is 10kHz. For typ-
ical RF waves of several MW with electric field values
of 50kV/m close to the antennas, the RF magnetic field
is 5× 10−3T and the RF magnetic contribution to the
Lorentz acceleration |~v × ~BRF | = 2.5kV/m.

Hence the ions travel around the torus in about
4× 10−5s, the cyclotron (’gyro’) period τg being much
shorter than the transit (’bounce’ & ’drift’) time τb,d,
which itself is much smaller than the collision time τc,

making it senseful to describe the cyclotron motion
as much faster than the bounce/transit motion, itself
typically much faster than the collision time and ren-
dering a collisionless description senseful. The scaling
τg << τb,d << τc is crucial for the customary models.
In particular, the ’slower’ phenomena are assumed to
be constant on the faster time scale while the faster
- oscillatory - phenomena are treated as being beyond
their transient state, all quantities merely varying as a
function of time as exp[iωt], where ω is the frequency
at which the external wave launchers are operated. The
particle motion is essentially imposed by the confining
magnetic field, the RF field being a small - be it fast -
perturbation and the RF electric field effect dominating
that of the magnetic field. Finally, the Larmor radius
is commonly much smaller than the equilibrium quan-
tity gradients, this giving rise to the so-called drift ap-
proximation and locally making a quasi-homogeneous
description senseful. In particular ρ/LBo

<< 1 where
ρ is the Larmor radius and LBo

is a typical scalelength
of the variation of the confining magnetic field.

To understand the basic physics of the impact of
the RF electric field on a test particle, we locally solve
the equation of motion and then use the result to evalu-
ate the net energy a charged particle can gain or lose in
a rapidly varying electric field along the trajectory it is
forced to follow by the fusion machine’s static confining
magnetic field. We start from a homogeneous plasma,
straight magnetic field line analysis and gradually in-
clude other effects.

Because the magnetic field is imposing a clear
asymmetry in the dynamics along as opposed to per-
pendicular to the magnetic field lines, the discussion of
the wave-particle interaction is most easily described
with reference to the direction along ~e// = ~Bo/Bo and
2 independent directions perpendicular to the static
magnetic field ~Bo. Neglecting the equilibrium electric
field related to the ohmic circuit, the solution of the
equation of motion of a charged particle immersed in
a homogeneous, static magnetic field can be written as
v⊥,1 = v⊥cosφ, v⊥,2 = v⊥sinφ where φ = φo−Ω(t− to)
while v// = ct, with Ω = qBo/m (Bo the confining
field, q the charge and m the mass of the species) the
cyclotron frequency, which can further be integrated
to get the particle position: x⊥,1 = x⊥,1,GC − ρsinφ,
x⊥,2 = x⊥,2,GC + ρcosφ in which the Larmor radius is
given by ρ = v⊥/Ω and ’GC’ refers to the guiding cen-
tre position. Assuming the electric field is a plane wave
characterized by a wave vector ~k, defining ψ as the angle
between ~k and ~e⊥,1 (k⊥,1 = k⊥cosψ, k⊥,2 = k⊥sinψ),
the work the electric field does on a particle can be
written

q ~E.~v = q
N=+∞∑

N=−∞
LNexp[−Nφ] (2)
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in which

LN = [
v⊥
2

(E−JN+1e
iψ + E+JN−1e

−iψ)

+E//v//JN ]eiNψ

is the Kennel-Engelmann operator [17] and where the
electric field is evaluated at the guiding center ~xGC =
[x⊥,1 +ρsinφ]~e⊥,1 +[x⊥,2−ρcosφ]~e⊥,2 +[v//(t− to)]~e//
rather than at the particle position and in which the ar-
gument of the Bessel functions is k⊥ρ. In doing so the
most rapidly varying contribution (the cyclotron oscil-
lation) is isolated from all slower contributions. Fig-
ure 2 illustrates that using the guiding center position
rather than the particle position as the reference posi-
tion makes the bookkeeping much simpler when study-
ing heating: In the particle frame, integration over a
reference volume entails integrating over all orbits with
various speeds and guiding centers that are intersecting
the reference volume. When particles are in coherent
motion with a wave and are periodically exchanging
energy with it, this exchange is not considered to be
’heating’ although the energy streaming into the refer-
ence volume in ~x will increase at some times and de-
crease at others. In the guiding center ~xGC frame the
picture is much clearer, simpler and more symmetrical,
as there is no leaking of particles into or out of refer-
ence volumes. On top of that, the fastest evolution has
been separated out, a non-negligible advantage when
searching for equations that will need to be solved nu-
merically as it implies a significant speed-up of the com-
putations. Finally, as will be seen later, expressing the
fields in terms of guiding center coordinates allows in-
terfacing to the Fokker-Planck equation describing the
net impact of the fields on the particles (rather than the
impact of the particle motion on the fields) in a natu-
ral way, allowing to make wave and particle equations
more easily compatible. From the equation of motion
one readily finds that the change of the particle energy
is ε̇ = dε

dt = q ~E.~v which, using the above found expres-
sion, can be written more explicitly as

ε̇ = q

+∞∑

−∞
LN ( ~EGC(to))exp[i(NΩ + k//v// − ω)(t− to)].

For most frequencies ω the right hand side is periodic
and hence the energy transfer between the electric field
and the particles is merely oscillating around an average
value but no net acceleration is taking place. At the
Doppler shifted cyclotron resonances ω = NΩ + k//v//
the exponential time dependent factor associated to a
specific cyclotron harmonic N on the right hand side
is constant and hence - in spite of all other terms still
oscillating as a function of time - there is a net energy
transfer.

Net heating takes place when NΩ + k//v// = ω, in
which the Doppler shift term k//v// is usually a cor-
rection to NΩ, except when N = 0 in which case it is
crucial. In the radio frequency domain (tens of MHz)
and for typical magnetic field strengths of current-day
magnetic fusion machines (a few Tesla), the resonance
condition for the ions can easily be satisfied for N 6= 0
i.e. they undergo cyclotron heating, while that of the
electrons requires N = 0 i.e. they feel the Cerenkov
effect. As a consequence, ions and electrons react very
differently to waves driven at frequencies in the ion cy-
clotron frequency range: For not too energetic particles,
the argument k⊥ρ of the Bessel function is small so that
J0 ≈ 1 and JM << 1 when M 6= 0. Hence, the ions
are mainly accelerated in the perpendicular direction
by the perpendicular components of the electric field
while the contribution of the parallel electric field has a
minor impact on them; on the other hand, the parallel
electric field gives the electrons a net pull in the paral-
lel direction (Landau damping). Cerenkov interaction
equally involves the perpendicular electric field compo-
nents, an effect known as transit time magnetic pump-
ing (TTMP). Whereas Landau damping causes parallel
acceleration and is present even when the electric field
is spatially uniform, TTMP affects the perpendicular
energy and requires inhomogeneity of the field. An ele-
gant discussion of the wave-particle interaction can be
found in [12].

Since collisons are infrequent but non-absent, it is
customary to interpret the frequency ω in the resonant
denominator as a complex quantity with a very small,
positive imaginary part iν, ν loosely being interpreted
as the collision frequency that would appear in the par-
ticle equation of motion if collisions would be accounted
for in a simple way. This gives a recipe for how to encir-
cle the poles at the resonances to ensure causality. The
contribution of the energy from events in the far past
(to → −∞) is then absent and only the end contribu-
tion of the time integral at time t survives. The need
for the elimination of the far past history is of partic-
ular interest to ensure there is net heating. It will be
discussed separately later.

II.B. The Quasilinear Approach: The RF Perturbed
Distribution and the Quasilinear Diffusion Operator

The time evolution equation (1) is rewritten mak-
ing use of the fact the confining magnetic field is much
larger than the fastly varying purely oscillatory electro-
magnetic perturbation, driven at the antenna frequency
ω i.e. proportional to ∝ exp[iωt]: Both the distribution
itself and the Lorentz force are separated into a large
term only involving slowly varying quantities (referred
to with a subscript ’o’), and a small but rapidly varying
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Figure 2: Cyclotron motion as seen in the particle (top)
and guiding centre (bottom) reference frame.

contribution (related to the driven RF fields):

df

dt
=
df

dt
|o +

df

dt
|RF =

dFo
dt
|o +

dFo
dt
|RF +

dfRF
dt
|o +

dfRF
dt
|RF = C + S − L

with d
dt |o = ∂

∂t + ~v.∇~x + q
m [ ~Eo + ~v × ~Bo].∇~v and

d
dt |RF = ~aRF .∇~v = q

m [ ~ERF + ~v × ~BRF ].∇~v, Fo the
slowly varying and fRF the rapidly varying distribu-
tion function. The first, zero order term in the above
only varies on the slowest time scale, the next 2 terms
are first order corrections which oscillate at frequency
ω, while the most rapidly varying terms in the last,
second order term contains factors that oscillate at fre-
quency 2ω. Since Fo only depends on the constants
of the motion, dFo

dt |o can be simplified to ∂Fo

∂t . The 2
linear terms yield an expression for the RF perturbed
distribution i.e. for the evolution on the fast time scale,
known as the Vlasov equation:

~aRF .∇~vFo +
dfRF
dt
|o = 0

i.e.

fRF = −
∫ t

orbit

dt′~aRF .∇~vFo (3)

which can be inserted in the fourth term of the evolu-
tion equation. Averaging < ... > the 4 terms over a full
oscillation period for all oscillatory aspects of the mo-
tion and the driven response, yields an equation for the
slow time variation, known as the Fokker-Planck equa-
tion. The first term stays untouched, the second and
third term as well as the oscillatory parts of the fourth
term vanish while a constant, second order contribution
survives. This yields

∂Fo
∂t

=< C > + < S > − < L > + < Q > (4)

in which < Q >=< ∇~v.~a∗RF
∫ t
orbit

dt′~aRF .∇~vFo > is
the quasi-linear diffusion operator, acting on the slowly
varying distribution function.

II.C. The Wave Equation & The Conductivity Tensor

Combining Maxwell’s equations for the evolution
of the electric field and the magnetic field, and assum-
ing the waves are driven at a frequency ω, the wave
equation can be written in terms of the electric field ~E
only,

∇×∇× ~E − k2
o
~E = iωµo[ ~Jantenna + ~Jplasma], (5)

in which ko = ω/c with c the speed of light. The fields

are excited by the current density ~Jantenna flowing on
the antennas typically located close to the edge of the
plasma. The plasma current ~Jplasma is composed of the
contributions from the various plasma constituants s,
~Jplasma =

∑
s qα

∫
d~v~vfRF,s, and is fully defined when

the perturbed distributions of all species are known.
Strictly, the plasma current contains an ohmic contri-
bution ( ~Jplasma = ~Johmic + ~JRF ) aside from the fast-
varying RF contribution. It has been neglected in the
present text.

An elegant way to solve the wave equation is rely-
ing on variational techniques, by multiplying the equa-
tion with a test function vector and integrating over
the volume of interest. Performing partial integration
to remove the highest order derivatives from ~E not only
allows to chose lower order base functions for a given
desired numerical accuracy when solving the equation,
it also allows to obtain a more symmetrical formulation
in which the test function vector ~F and the electric field
~E play a similar role. The resulting equation is

∫
d~x[k2

o
~F ∗. ~E − (∇× ~F )∗.(∇× ~E)] +W =

−[

∫

surface

d~S. ~F ∗ ×∇× ~E + iωµo

∫
d~x~F ∗. ~Jantenna]
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with W/[iωµo] =
∫
d~x~F ∗. ~JRF = q

∫
d~xd~v ~F ∗.~vfRF .

The surface term needs to vanish at the metallic wall
to ensure no electromagnetic flux leaks away. A supple-
mentary advantage of this formulation is that it readily
yields the associated energy conservation theorem when
substituting the test function vector by the electric field
(see further for the expression for the absorbed power
density shared by the wave and particle descriptions).

The perturbed current density ~Jplasma and the elec-

tric field ~E are related by the conductivity tensor ~~σ:
In Fourier space ~Jplasma,~k′ = ~~σ~k′,~k.

~E~k which is closely

related to the dielectric tensor
~~K = ~~1 + iωµo~~σ.

For a plasma in thermal equilibrium, the
term q ~F ∗.~vfRF can be written more explicitly as
−q ~F ∗.~v

∫ t
dt′q ~E.~v Fo

kT in which the last factor can be
shifted in front of the particle history integral since the
slowly varying distribution only depends on the con-
stants of the motion. One gets

W = ωµoq
22π

∫
d~xdv⊥dv//v⊥

Fo
kT

∑

N

LN (~F )∗LN ( ~E)

NΩ + k//v// − ω
(6)

Isolating the various contributions from the test
function vector and the electric field in this expression
yields an expression for the conductivity tensor.

The velocity space integrals in Eq. (6) can be
performed to yield a compact expression for the di-
electric response in a Maxwellian plasma. The inte-
gral over the parallel velocity yields the Fried-Conte
plasma dispersion function Z(ζ), which - aside from
the hot plasma corrections to the wave propagation -
describes the process of collisionless damping. The ar-
gument of the Fried-Conte function is ζ = ω−NΩ

k//vth
. Fig-

ure 3 depicts this function for Im(ζ) → 0+. The real
part asymptotically approaches the cold plasma limit
Re[Z] ≈ −1/ζ, but bends the resonant crossing from
+∞ to −∞ at ζ = 0 into a smooth transition behaving
like Re[Z] ≈ −2ζ. The imaginary part is a Gaussian.
Physically its width is determined by the scalelength
over which the cyclotron frequency Ω varies, and the
factors contributing to the Doppler shift, namely the
parallel wave number k// and the thermal velocity vth.
Away from the cold plasma resonance damping fades
away quickly while the reactive part stays significant
much further from ζ = 0.

As long as k⊥ρ << 1 is satisfied, the Bessel func-
tions can easily be approached by their truncated Tay-
lor series expansion and the perpendicular integrals can
easily be integrated. Retaining all finite Larmor radius
effects yields modified Bessel functions (see e.g. [3]).
Although the perpendicular (cyclotron gyration) dy-
namics seems more daunting than the parallel dynam-
ics, it is the latter that is most challenging: In strong

magnetic fields, the cyclotron motion moves the parti-
cle only a small distance - the Larmor radius ρ - away
from the guiding center, hence equilibrium quantities
typically vary little between the particle and the guid-
ing center positions. But the guiding centers themselves
often sample large regions of the machine since their
motion is only restricted by the magnetic field topol-
ogy. Taylor series expansions are routinely used for the
perpendicular dynamics but have to be used with care
for the parallel dynamics.

Figure 3: The Fried-Conte plasma dispersion function
and its leading order Taylor and asymptotic series re-
presentation.

Expressions have also been derived to account for
arbitrary Fo (see e.g.[7]). The Fried-Conte function is
now replaced by other (in general numerically evalu-
ated) functions. For a sufficiently refined velocity grid,
the distribution function can locally be approximated
with bi-linear functions and the partial integral can be
evaluated analytically, yielding a logarithmic contribu-
tion. Upon crossing the resonance, the logarithm picks
up a ’switch-on kick’ imaginary contribution: It is the
delta function contribution at the pole of the original
integrand that represents the discontinuous Heaviside
step energy ’kick’ when picking up the energy due to
crossing the resonance. The kick shows up in the uni-
form plasma description as a resonance crossing in ve-
locity space. In non-uniform plasmas the kick can just
as well be described by integrating along the orbit.

II.D. The Cold Plasma Limit

To get a feeling of how drastically a plasma changes
the wave characteristics of the electromagnetic waves
that exist in vacuum, it is already sufficient to simply
consider the cold plasma limit. This may seem a dras-
tic oversimplification but since k⊥ρ is small when the
temperature is low, the cold plasma limit yields a rea-
sonable description of the fate of the waves launched
from RF antennas, to the obvious exception of the col-
lisionless damping processes themselves which are an
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inherently kinetic - as opposed to fluid - effect.
Although it is sufficient to take the asymptotic limit

Z(ζ) → −1/ζ and J0(k⊥ρ) → 1, while JM → 0 for
Bessel function with order M > 1 to retrieve the cold
plasma limit, it is much easier to directly rederive the
conductivity tensor starting from the solutions of the
equation of motion. Using the Stix notation [3], the
cold plasma dielectric tensor can be written

~~K. ~E =




S −iD 0
iD S 0
0 0 P


 .




E⊥,1
E⊥,2
E//




in which S = (R+ L)/2, D = (R− L)/2, with

R = 1−
∑

s

ω2
p,s/ω(ω + Ωs),

L = 1−
∑

s

ω2
p,s/ω(ω − Ωs)

P = 1−
∑

s

ω2
p,s/ω

2

where the sum is on the various types of species s the
plasma is constituted of and ωp is the plasma frequency.

II.E. Dispersion Equation Roots

Waves in a cold plasma are electromagnetic in char-
acter i.e. their energy is carried purely by the Poynting
flux. When the plasma density goes to zero, their dis-
persion roots join the vacuum roots k2

⊥ = k2
o − k2

//.

With respect to ~Bo, one of the 2 cold plasma roots
is essentially transverse electric, and the other essen-
tially transverse magnetic in character. Referring to
the group (energy propagation) velocity, the former is
known as a ’fast’ wave while the other is a ’slow’ wave.
The former allows to carry wave power across mag-
netic surfaces and is the preferred candidate to heat
the plasma core in the ion cyclotron domain, while the
latter tends to propagate along magnetic surfaces. Fi-
nite temperature effects add kinetic corrections to these
modes, and introduce supplementary wave branches.
For not too energetic particles, the dielectric tensor is
usually truncated at second order effects in the Larmor
radius. This results in a supplementary mode appearing
in the dispersion equation: the (first) Bernstein wave.
This wave is essentially electrostatic in nature i.e. its
energy is carried by particles in coherent motion with
the wave, while its Poynting flux is negligible. Figure
4 shows a dispersion plot of the fast wave exciting the
Berstein wave at the place where the decoupled cold
plasma fast wave has a resonance (S = k2

//). This be-

ing very close to the ion-ion hybrid layer (S = 0) since
k2
// << |S| in sufficiently dense plasmas, the mode con-

version layer is often labeled as the ion-ion hybrid layer.

Figure 4: Fast and (first) ion Bernstein wave dispersion
equation roots for 3 different central temperatures us-
ing a dielectric description retaining all finite Larmor
radius corrections. Note that the fast wave root hardly
changes while the Bernstein wave root - a root absent
in a cold plasma description - depends sensitively on
the temperature.

Strictly speaking, the Berstein wave cannot be de-
scribed by a dispersion resulting from a truncated Tay-
lor series expansion in k⊥ρ since k⊥,Bernρ is of order 1,
although such a model does correctly locate the places
where the fast wave excites it for up to second cyclotron
harmonic terms. At higher frequencies and/or for more
energetic particles, the customary truncation of the di-
electric tensor is not even rigorous for the fast wave any-
more. Hence, higher order finite Larmor radius terms
have to be retained. A hot plasma supports an infinity
of hot plasma modes, adding supplementary Bernstein
modes. Whether they actually play a role depends on
whether or not they are excited. Increasing the fre-
quency while keeping the magnetic field fixed brings
higher harmonics into the plasma. Higher Bernstein
wave modes can be excited but the fast and Bernstein
waves are gradually more decoupled at higher frequen-
cies.

II.F. The Fokker-Planck Equation [17-23]

Electromagnetic waves cannot directly be observed
experimentally so their behavior is indirectly studied
through e.g. the response of temperature and density to
sudden changes in the externally launched power level
(see e.g. [22]). On the other hand, multiple diagnos-
tics exist to monitor aspects of fast particle populations
present in the plasma and to cross-check against theo-
retical predictions.

As briefly discussed before, when all fast scale dy-
namics are removed from the description by averaging
over all oscillatory aspects of the motion and driven res-
ponse, the Fokker-Planck equation (4) results. Whereas
the wave equation is commonly tackled by integrating
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Figure 5: Fast wave dispersion root at f = 300MHz
and k//,o = 5/m in a D − T − (α) − (DNBI) DEMO
plasma; Bo = 5.74T . The top curve shows the real
part of the fast wave root; the bottom plot depicts the
imaginary part in which ion cyclotron heating at the
6th, 7th and 8th harmonic is observed.

over velocity space so that the independent variables
are spatial coordinates, the Fokker-Planck equation is
necessarily solved in terms of constants of the motion.
The distribution function of a given plasma species rep-
resented in terms of the constants of the motion (e.g.
energy, magnetic moment) is, by definition, the same
along the trajectory. However, because of the magnetic
field inhomogeneity, the same distribution expressed in
terms of its local velocity components (v⊥, v//) looks
different depending on the location one looks at it (see
Fig.6). Hence, interpretation of experimental data re-
quires careful analysis: As diagnostics focus on differ-
ent aspects of a same distribution, they may seemingly
contradict but in truth corroborate one another.

The Coulomb collision operator for a uniform
plasma is known. A convenient, symmetrical form is
due to Landau (see e.g. [1, 2, 18]):

∑

s

C(Foa, Fos) = ∇~v.
∑

s

~S
a/s
C

~S
a/s
C =

q2
aq

2
s lnΓa/s

8πε2oma

∫
d~v′

u2~~1− ~u~u
u3

[
Foa
ms

∂Fos
∂~v′
−Fos
ma

∂Foa
∂~v

]

in which ’a’ refers to the species under examination and
the sum is over all species ’s’ in the plasma; ~u is the rel-
ative velocity ~v−~v′. Since the species of type ’a’ is one

of the species in the sum, the collision operator is a
non-linear integro-differential operator. If the species
’a’ is a small minority, its selfcollisions can be neglected
and the Fokker-Planck equation becomes a linear equa-
tion in Foa, but if it is one of the main constituants the
nonlinear collision operator has to be retained.

Figure 6: 3 representations of the same RF heated

beam distribution energy density mv2

2 Fo: (a) as a func-
tion of the constants of the motion velocity v and (nor-
malized) magnetic moment xn, and as a function of
(v⊥, v//) at (b) the low field side midplane and (c) the
high field side midplane (see [23]).

Again, analytical expressions are available for the
case the distribution function of the species ’s’ is
Maxwellian, in which case the collision operator can
be written in terms of the error function. In case
Fos is isotropical, the integrals that need to be eval-
uated reduce to 1-dimensional integrals and in the fully
anisotropical case the operator acting on Foa can be
written in terms of the Rosenbluth potentials. The
step from the uniform plasma collision operator C to
the operator < C > averaged over all fast aspects of
the motion is a nontrivial step, the fully rigorous treat-
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ment of which is still awaited.
In view of the fact that the various species inter-

act with each other collisionally, and that several types
of species can simultaneously be heated by electromag-
netic waves, a series of coupled Fokker-Planck equations
rather than a single one should be solved. This can be
done iteratively, taking the distributions obtained in the
previous iteration to compute the collision operator in
the current step. Provided convergence is reached, this
allows accounting for the non-linear collision operator
without making use of a non-linear system solver. Fig-
ure 7 shows a simplified 1-dimensional case in which it
was assumed that all distributions are isotropic. It de-
picts an ITER example for the conditions foreseen for
wave heating of the D−T plasma during the activated
phase of operation of the machine: the majority of T
ions is heated at its second harmonic cyclotron layer,
while a minority of 3He is simultaneously heated at
its fundamental cyclotron resonance to help cranking
up the fusion reactivity; unavoidably, the electrons are
heated by Landau and TTMP damping.
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Figure 7: ITER D − T − (3He) heating: (a) Effective
temperatures and (b) electron power balance.

II.G. A Note on Selfconsistency

A rigorous treatment requires that the Fokker-
Planck (FP ) and wave (W ) equations are solved si-
multaneously and on the same footing. Their intimate
connection is exemplified by the 2 expressions of the
absorbed power density:

Pabs,FP =
∂

∂t
[

∫
d~vd~xεFo]|RF =

∫
d~vd~xε

∂Fo
∂t
|RF =

1

2
Re

∫
d~vd~xε∇~v.~a∗RF

∫ t

−∞
dt′~aRF .∇~vFo

=
q

2
Re

∫
d~vd~x~E∗.~vfRF =

q

2
Re

∫
d~x~E∗. ~JRF = Pabs,W

in which Pabs,FP is the RF power density written in
the way it is used in the Fokker-Planck equation (with
ε the energy, and ∂Fo

∂t |RF the RF diffusion operator,
and Pabs,W the RF power density as written in the
wave equation, involving the RF perturbed current den-
sity ~JRF and fRF the perturbed distribution function;
~aRF = q

m [ ~ERF +~v× ~BRF ] is the Lorentz force accelera-
tion/decelaration caused by the small but rapidly vary-
ing electromagnetic field driven at frequency ω. For-
mally writing down the above expression is immediate.
To come up with practical expressions for the coeffi-
cients to be used in the wave and Fokker-Planck equa-
tions is less trivial, at least when the equations are truly
treated on the same footing i.e. when the 2 problems
posed in 6-dimensional phase space are solved removing
3 of the 6 independent variables to arrive at an equation
in the remaining 3 variables using the same approxima-
tions for both equations. Getting the proper coefficients
requires integrating (a) on the velocity space variables
to obtain the dielectric response coefficients needed in
the wave equation and (b) on the gyro, bounce and
drift motions to find an expression for the quasi-linear
diffusion operator. Ideally, the same elementary ’build-
ing blocks’ are used and the relevant integrations are
performed on them.

III. SOME ASPECTS OF NONUNIFORM PLASMA
MODELING

III.A. Mode Coupling [38-51]

Before commenting on the particular issues brought
about by the impact of the plasma inhomogeneities on
the orbits of the particles and the challenges this leads
to when trying to write down a rigorous expression for
the dielectric response, a simplified problem is looked
at first, namely that of the wave propagation in a toka-
mak in absence of a poloidal field i.e. where the guid-
ing center orbits are assumed to simply being given by
ϕ(t) = ϕ(to) + v//(t − to). Starting from Eq. (6), but
retaining the full wave spectrum and toroidal curvature
while assuming that the various species are Maxwellian
and that the toroidal angle as well as the distance from
midplane are ignorable variables (allowing to isolate in-
dividual n toroidal modes and kZ) yields

W = ωµo(2π)3

∫
dRRdv⊥dv//v⊥

Fo
kT

∑

N

[
∫
kR′LN (~F )]∗[

∫
kRLN ( ~E)]

NΩ + k//v// − ω
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which is fully symmetrical w.r.t. the test function vec-
tor ~F and the electric field ~E, guaranteeing a positive
definite power density for a plasma in thermal equilib-
rium. To arrive at a practical expression one of the
following 2 approaches is used:

• Assuming that k⊥ρ << 1 so that the Bessel func-
tions in the Kennel-Engelmann expressions can be
approximated by a truncated Taylor series expan-
sion around the origin, which upon realizing that

dm

dRm
~E(R) =

∫
dkR(ikR)mexp[ikRR] ~EkR

allows to write down an expression for the dielec-
tric response W and the purely electromagnetic
(curl) term to be used in the Galerkin form of the
wave equation; it is customary to truncate the Tay-
lor series at terms of second order in k⊥ρ. Remov-
ing the differential operators from the test func-
tion vector components ~F by partial integrations
allows to find the corresponding expression for the
dielectric tensor, and the so obtained surface terms
immediately provide the expression for the kinetic
flux [38].

• In reality, k⊥ρ << 1 is not satisfied for all modes
that the plasma supports and thus that assump-
tion should not be made if such modes are excited.
Bernstein modes are finite temperature modes for
which k⊥ρ ≈ 1 and even the cold plasma slow
mode violates the smallness condition. Hence if
short wavelength branches are excited - either di-
rectly at the plasma edge or at ion-ion hybrid lay-
ers [3] - a more rigorous treatment is needed to
ensure the predicted fate of the shorter wavelength
modes is correctly described. The easiest way to do
this is to rewrite the Fourier integrals as discrete
sums and to use locally constant base functions
[H(kR−kR,i)][H(kR,i+1−kR)]. The Galerkin form
of the wave equation is hereby transformed into
a system of linear equations allowing to find the
electric field Fourier components in the discretized
Fourier space.

Figure 8 shows an example of the integration of the
1D integrodifferential wave equation. The top figure de-
picts the perpendicular wave components. An incoming
fast wave carries energy into the region of interest from
the right. At the ion-ion hybrid layer at R ≈ 3m mode
conversion to the Bernstein wave takes place, although
part of the fast wave energy simply tunnels through
the confluence layers and makes it to the high field side
(left on the plot) as a fast wave. Note that the Bern-
stein wave is efficiently absorbed, its amplitude hav-
ing shrunk again to zero about 0.3m towards the high
field side. The bottom figure shows the corresponding
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Figure 8: Bernstein wave excitation by the fast magne-
tosonic wave at the ion-ion hybrid layer: electric field
components (top) and Fourier spectrum (bottom).

kR Fourier spectrum of the perpendicular electric field.
The Bernstein wave is a backward, electrostatic wave:
Its main field component is the component in the di-
rection of the background gradient, and for a leftward
propagating wave that carries energy from the conflu-
ence layer towards the high field side it is the kR > 0
spectrum that is significantly non-zero. The 2 peaks
in the low kR part of the spectrum correspond to the
incoming fast wave (highest amplitude for kR < 0 as
the fast wave is a forward wave carrying energy in the
same direction as the phase velocity) and the reflected
wave (somewhat smaller peak, and in the kR > 0 region
since the reflected wave necessarily carries less energy
that the incoming wave).

In two dimensions poloidal as well as radial mode
coupling occurs. Figure 9 gives an example of 2D
wave equation modeling in which the geometry and the
poloidal magnetic field has been accounted for. In this
ITER example the short wavelength modes are not ex-
cited.

III.B. Orbit topology [24-32]

The motion of a charged particle in an axisymmet-
rical tokamak is characterized by 3 constants of the mo-
tion and by 3 periodic aspects of the motion. The 3 con-

stants of the motion often used are the energy ε = mv2

2 ,

the magnetic moment µ =
mv2⊥
2Bo

and the toroidal angu-
lar momentum Pϕ = mRvϕ − qΨ/2π (ϕ is the toroidal
angle, q the charge and Ψ the poloidal magnetic flux)
but suitable other sets of 3 independent functions of the
customary 3 can equally well be used. In order of de-
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Figure 9: Poloidal electric field component for the RF
heating scenario foreseen for the activated ITER phase;
3% 3He in a balanced D − T plasma, f=53MHz and
Bo = 5.3T .

creasing oscillation frequency, the 3 oscillatory aspects
are the cyclotron motion, the bounce motion and the
toroidal drift motion. Figure 10 gives a schematic view
of the various oscillatory aspects of the motion for a
trapped particle in a tokamak.

Figure 10: Schematic representation of the particle or-
bits in a tokamak (JET-EFDA figure JG05.537-4).

Even on a single particle level, adding the poloidal
field to the description vastly changes the complexity
of the wave-particle interaction problem since the guid-
ing center orbits are now no longer on R = ct surfaces
but have become poloidally closed loops. Rather than
sampling a unique value of the confining magnetic field,
the guiding centers sample regions of varying toroidal
field strength. Whereas in a uniform plasma a parti-
cle either is ’in resonance’ or ’out of resonance’ at all
times, the resonances in inhomogeneous plasmas are
localized i.e. the resonance condition is satisfied only
locally at some positions along the orbit. The phase
factor exp[i(NΩ+k//v//−ω)(t−to)] in the earlier men-

tioned evolution equation for the particle energy is now
generalized to an integral over ~k space of terms of the
form exp[iΘ(t)] in which Θ = −Nφ+~k(t).~xGC(t)−ωt.
In the neighbourhood of the resonance the phase in the
exponential can be approximated by a truncated Tay-
lor series expansion, Θ(t) ≈ Θ(to) + Θ̇(to)(t − to) +
1
2 Θ̈(to)(t − to)2 + 1

3!

...
Θ(to)(t − to)3. The corresponding

exponential factor generally oscillates very quickly so
that its integral does not accumulate a net contribu-
tion. Close to stationary phase points (Θ̇ = 0) the
phase variation slows down and the integral picks up a
finite contribution. Figure 11 depicts the relevant inte-
gral for a regular stationary phase point (Θ̈ 6= 0) and
for a higher order stationary phase point (Θ̈ = 0). The
former is representative for a standard resonance cross-
ing while the latter is representative for a resonance at
a turning point of the orbit, where 2 resonances merge
(strictly, the higher order stationary phase point is a
bit separated from the turning point: v// = 0 does not
coincide with vθ = 0). The linear line corresponding to
the uniform plasma case for which the particle always
stays in resonance is indicated as well.

Figure 11: The energy kick felt by the particle along
the orbit for resonance at a regular point (Θ̈ 6= 0) and
at a tangent resonance point (Θ̈ = 0).

In spite of the fact that energetic ions have guid-
ing center orbits that deviate significantly from mag-
netic surfaces, the difference between the toroidal an-
gular momentum Pϕ and the poloidal flux function Ψ
is often neglected (’zero drift’ or ’zero banana width’
approximation). Aside from the fact that this is an
acceptable approximation in large enough machines or
for low enough temperatures, the main motivation for
this approximation is that it hugely simplifies the equa-
tions while keeping poloidal mode coupling and particle
trapping/detrapping, two of the most important inho-
mogeneity effects, intact. Since the dielectric response
written earlier was using the electric field at the guiding
center rather than the particle position and since guid-
ing centers stay on magnetic surfaces in the zero drift
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approximation, the parallel gradient can be written as
an algebraic rather than as a differential operator when
expressing the various quantities in terms of their (dis-
crete) toroidal and poloidal Fourier series expansions:

∇// =
cosα

|∂~x/∂ϕ|
∂

∂ϕ
+

sinα

|∂~x/∂θ|
∂

∂θ

= cosα
intor
R

+ sinα
impol

|∂~x/∂θ| = ik//

for each individual poloidal mode mpol and toroidal
mode ntor; α is the angle between the total magnetic
field and the toroidal direction. The denominator resul-
ting from the particle history integral is now no longer
a constant and net resonant interaction only takes place
at the poloidal angle that satisfies NΩ + k//v// = ω in
which the cyclotron frequency, the parallel wave num-
ber and the parallel velocity now all vary along the or-
bit. Although the density and temperature are constant
along the zero-drift guiding center trajectory, poloidal
mode coupling takes place because of the magnetic field
and geometrical inhomogeneity the guiding center ex-
periences along its orbit. This has one mild and one
more important consequence:

• The mild consequency is that the perpendicular
differential operator in the expression LN due to
Kennel-Engelmann requires retaining the differen-
tial character in both independent perpendicular
directions. The resulting expressions yield a double
sum over poloidal modes, and differential operators
in the direction perpendicular to the magnetic sur-
faces. For heating scenarios in which short wave-
length branches are excited, a proper description of
the poloidal coupling requires accounting for a very
large number of poloidal modes and couplings, and
a large number of radial grid points. In an axisym-
metrical tokamak there is no toroidal coupling and
thus a single sum on the toroidal mode spectrum
remains; in a real tokamak - in which magnetic
ripple occurs since a discrete number of toroidal
magnetic field coils are installed - and in a stel-
larator, also the toroidal modes are coupled. Even
in the zero drift limit, solving the wave equation in
2 or 3 dimensions requires powerful computers.

• Whereas the previous section involves supplemen-
tary bookkeeping but is not truly posing a prob-
lem, the fact that the parallel mode number ap-
pears in the resonant denominator gives rise to a
fundamental problem: Whereas expression (6) is

fully symmetrical in the test function vector ~F and
the electric field ~E and guarantees positive definite
and purely resonant absorption for Maxwellian dis-
tributions, which is what is physically expected,
the now obtained expressions are symmetrical for

what concerns the perpendicular operator but are
asymmetrical for what concerns the parallel dy-
namics. As long as k// is modest (as is typically the
case for the fast wave), this is of little consequence.
But for short wavelength branches, positive defi-
nite absorption for Maxwellian distributions is no
longer guaranteed. A rigorous cure for that flaw
requires a much more sophisticated model, as will
be discussed in the next section.

Figure 12: Schematic representation of the impact of
cyclotron heating on a charged particle in a tokamak:
The perpendicular energy of the particle gradually in-
creases. Initially passing particles become trapped,
their banana tip shifting towards the low field side when
v⊥ gradually grows. The interaction of the particle with
the wave stops when the orbit no longer cuts the res-
onance. Just prior to that happening, 2 resonances
merge, giving rise to efficient heating at the tangent
resonance.

It was mentioned earlier that for not too ener-
getic ions the Doppler shift term k//v// in the res-
onance condition NΩ + k//v// = ω is a small cor-
rection to the cyclotron term. As the corresponding
distribution is only significant in a restricted region
of velocity space, it implies that the region where cy-
clotron interaction takes place is restricted in space as
well: δR/R ≈ δ(k//v//)/ω. Although the electrons are
equally resonantly interacting with the field, the reso-
nance condition is much less stringent on them since
k//v// = ω is commonly satisfied in a wide region be-
cause of the modest steepness of the temperature pro-
file. Consequently, it is fairly straightforward in the
ion cyclotron frequency domain to ensure ion heating
can only take places at a predetermined location but
it is less evident to avoid the often unwanted electron
heating. In big, hot and dense machines such as ITER
RF waves have already lost a non-negligible fraction of
their energy by electron Landau and TTMP damping
before arriving at the cyclotron layer.
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III.C. Bounce Motion, Tangent Resonance, ...

Two approaches are commonly used to derive the
wave equation (and in particular to find a suitable
expression for the RF perturbed distribution function
fRF ) and the Fokker-Planck equation (and in particular
the quasilinear diffusion operator < Q >). One is the
very intuitive approach in which the governing Lorentz
force can readily be recognized in the expressions and
for which the link with straight magnetic field line uni-
form plasm theory is direct (see e.g. [26, 44, 43]). The
other is more formal but more general and allows to
benefit from the action-angle (Hamiltonian) formalism
(see e.g. [33, 35, 36, 30]).

Practical expressions proposed by various authors
tend to differ somewhat since different variables are cho-
sen and different approximations are made. For wave
equation studies (focussing on the fast dynamics), the
trajectory integral is most intuitive and therefore most
frequently adopted but for Fokker-Planck equation, the
details of the fast dynamics are only indirectly relevant
and all has to be expressed in terms of constants of the
motion, hence tending to be closer to the action-angle
technique which elegantly allows to retain the slow time
scale physics while integrating away the fast phenomena
by suitable averages over the various relevant oscillation
periods. Kaufman showed, however, that the Hamilto-
nian description can equally be used to describe the fast
scale physics. More importantly still, he stressed that a
rigorous description of both aspects of the wave-particle
interaction requires making the same approximations
in both equations if one wants to describe the physics
self-consistently. If applied rigorously, the path inte-
gral and action-angle methods are fully equivalent; for a
somewhat more detailed discussion, see [34]. However,
and in spite of Kaufman’s visionary paper and presently
available powerful computers, a fully rigorous descrip-
tion of the plasma heating process by electromagnetic
waves is still awaited and a fully selfconsistent descrip-
tion based on a sufficiently rigorous footing is a project
still to be tackled ...

The drift approximation and quasilinear approach
make sense because of the vastly different time and spa-
tial scales to describe the wave-particle interaction by
first computing the zero order motion in absence of the
rapid but small perturbation, and to account for the
corrections relying on perturbation theory. In an ax-
isymmetric tokamak in absence of perturbations, the
particle motion can be described in terms of 3 con-
stants of the motion ~Λ and 3 angles ~Φ that describe
the periodic aspects of the particle motion. Kaufman
proposed to rely on action-angle variables but in the
literature a wide variety of constants of the motion was
successfully used. In contrast, the choice of the angles
as used in the Hamiltonian theory is much more appeal-
ing than any other choice since these angles vary lin-

early with time and thus time history integrals become
trivial: Formally, the integrals are like those appear-
ing in the uniform plasma case since - once functions
only involving constants of the motion have been pulled
out of time history integrals (since d

dt |o = ∂
∂t + ~ω. ∂∂Φ

e.g. fRF = −
∫
dt′~aRF .∇~vFo can simply be written as

fRF = −∂Fo

∂~Λ
.
∫
dt′Λ̇), the rapidly varying phase fac-

tor denoting all 4 oscillatory aspects of the driven res-
ponse and particle motion is of the form ~m.~Φ(t) − ωt
in which ~Φ(t) = ~Φ(to) + ~ω(t− to) and the gyro, bounce
and toroidal drift frequencies ~ω = (ωg, ωb, ωd) are only

depending on the constants of the motion ~Λ; the corre-
sponding mode numbers are ~̃m = (mg = −N,mb,md =
ntor) in which the bounce mode number mb should
not be confused with the poloidal mode number mpol

but the other 2 mode numbers correspond to the cy-
clotron mode and the toroidal mode numbers. And so
time history integrals simply yield factors of the form
.../[ ~̃m.~ω−ω] i.e. prescribe that waves and particles res-

onantly interact when the resonance condition ~̃m.~ω = ω
(ω being the generator frequency) is satisfied.

A major simplification of the algebra comes from
the identity ~aRF = i

ωm [ ddt∇~v − ∇~x]q ~E.~v (see e.g. [5])
since it allows to write the various contributions of
which the time history integrals needs to be found to
come up with an appropriate expression for the dielec-
tric response of the plasma to a rapidly oscillating elec-
tromagnetic wave in terms of ε̇ = q ~E.~v. For example

fRF =
3∑

j=1

i

ωm

∂Fo
∂Λj

[−q ~E.∇~vΛj +

∫ t

dt′DΛj
ε̇]

in which DG... = d
dt [∇~vG.∇~v...]+∇~vG.∇~x..., hereby es-

sentially reducing the algebraic work to be done to de-
scribe the impact of an arbitrary distribution function
Fo(~Λ) to the work needed for the case of an isotropic
distribution. For a Maxwellian distribution, it can eas-
ily be shown that the net absorption of wave energy by
a particle population is positive definite and that the
interaction is resonant in nature:

∑

~̃m, ~̃ ′m

< q ~E.~v|∗
~̃ ′m

∫ t

∞
dt′q ~E.~v| ~̃m >=

∑

~̃m

|q ~E.~v| ~̃m|2
i[ ~̃m.~ω − ω]

.

Making use of generating functions for the transforma-
tion between canonical variables and applying them to
the action-angle ( ~J, ~Φ) variables proposed by Kaufman,
one finds DJi = m ∂

∂Φi
where m is the mass of the

examined type of particles [34]. Whereas the toroidal
angular momentum Pϕ and the magnetic moment µ
are natural variables to use in the computations, the
third Kaufman action - related to the surface enclosed
by the poloidal closed drift orbit - is not very practi-
cal. Replacing it by the energy ε allows to find a com-
pact operator to generalize the expression found for a
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Maxwellian distribution to that for an arbitrary distri-
bution Fo(~Λ): ∂Fo

∂Λ1
→ ∂

∂Λ1
+ N ∂

∂Λ2
+ ntor

∂
∂Λ3

when

~Λ = ( εω ,−
mv2⊥
2Ω , Pϕ = mRvϕ − qΨ

2π ) where Ψ is the
poloidal magnetic flux.

Of course, although the Hamiltonian method offers
an elegant framework to do the required evaluations,
its simplicity is somewhat misleading:

• The Fourier transformation of the work q ~E.~v done
by the electric field on the particles, written down
only formally in Kaufman’s paper is where the full
complexity of the acceleration and deceleration of
particles on their orbits through an inhomogeneous
static magnetic field will show up. Happily, the
vast difference in time response time of the vari-
ous aspects of the motion allows to rely on asymp-
totic techniques to perform this step. First, the
Fourier analysis is performed at a fixed time, and
then the integrals along the orbits are evaluated.
The Fourier transform of q ~E.~v is

q ~E.~v| ~̃m(~Λ) =
1

(2π)3

∫
d~Φq ~E.~vexp[−i ~̃m.~Φ].

Formally writing the electric field in terms of its
~k spectrum so that, analogously to the uniform
plasma Eq. (2), the phase of q ~E.~v is ~k.~xGC−Nφ−
ωt (GC=guiding center), it can readily be seen

that the stationary phase points of the ~̃m Fourier
component are given by the condition ~k.~vGC +
NΩ = ~̃m.~ω so that the global resonance condition
~̃m.~ω = ω can be rewritten as ~k.~vGC + NΩ = ω,
which reduces to the familiar resonance condition
k//v// + NΩ = ω of the uniform plasma (and
more in particular ρ/LBo = 0 i.e. driftless) limit.
It is not a trivial task to rigorously account for
the drift orbit effects since perpendicular correc-
tions not only have to be added to the general-
ized Kennel-Engelmann operator but they now en-
ter the resonance condition as well.

• A supplementary difficulty comes from the fact
that there are many thousands of bounce modes
that need to be evaluated to describe wave-particle
interaction accounting for the plasma inhomogene-
ity rigorously. This amounts to a significant in-
crease of the computation time required to solve
the equations.

III.D. Decorrelation, Superadiabaticity [33-37,52-55]

It was discussed earlier that the work q ~E.~v the elec-
tric field does on a charged particle is an oscillatory
function of time i.e. can be written as a sum of terms
proportional to a phase factor exp[iΘ(t)]. As the guid-
ing center orbits in the drift approximation are closed

poloidally, the particles cross every poloidal position
many times every second (bounce frequency). Most
of the contributions to the work are oscillatory in na-
ture and cancel out when integrated over all fast time
scales (gyro-, poloidal bounce and toroidal drift mo-
tion), yielding a zero net effect. Only the resonant con-
tributions possibly give rise to a finite effect. That even
these do not cancel on average, is not as evident as it
may seem at first sight: In general, the number of cycles
the work goes through in between 2 successive transits
is not an integer number and thus the phase change is
not a multiple of 2π so the average work done over a
longer period of time is the sum of ’energy kicks’ with
the same amplitude but at different phase. Assuming
that the phase difference between 2 successive transits
modulo 2π is ∆Θ, it can readily be seen that for every
particular phase at a given crossing, there is another
crossing in a not too distant past that more or less can-
cels out the present contribution since ∆Θ attains any
value between 0 and 2π with equal probability. And
so, even if the particle gets an energy kick every time
it crosses the resonance, the net effect of many cross-
ings (typically a few thousand per second for standard
ion temperatures in typical working conditions) is still
zero ... Unless something breaks the pure periodicity
and makes the particles somehow ’forget’ about their
encounters in the far past so that rather than a very
large number of crossings being relevant, only the most
recent ones are. Collionality does exactly that.

Let us consider the simplest possible ’Krook’ colli-
sion operator C(f) = νf , where ν is the dominant col-
lision frequency for the species considered, to discuss
the principle: Whereas the fast dynamics of the wave-
particle interaction is typically described by the Vlasov
equation, a somewhat more careful examination of the
evolution equation we started from shows that collision-
ality can strictly not be omitted when describing the
fast time scale: the collision operator C in that origi-
nal equation acts on the full distribution f = Fo + fRF
and not only on the slowly varying part Fo. Hence the
Vlasov equation should be extended to contain a small
but nonzero contribution, reflecting the rare but non-
absent collisions the particles undergo along their un-
perturbed orbits: d

dt |ofRF +~aRF .∇Fo = C(fRF ). Writ-
ing the time derivative along the trajectory in terms of
the constants of the motion ~Λ and the angles ~Φ and
assuming that the perturbed distribution can be writ-
ten as the product of a term only involving slow dy-
namics and a term involving fast dynamics i.e. fRF =
H(~Λ, t)f̃(~Λ, ~Φ, t), the fast and slow dynamics can be iso-
lated: [H d

dt |of̃ + ~aRF .∇~vFo]/f̃ = [− ∂
∂tH + νH]. Since

the right hand side of this expression only contains
slow dynamics (no fast period response), one can for-
mally write that both sides of this equation indepen-
dently have to be equal to a slowly varying function,
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G = G(~Λ, t) which is negligibly small on the fast dy-
namics time scale, G ≈ 0. It follows that the factor
H can to good approximation be evaluated explicitly:
H ∝ exp(νt). And so the Vlasov equation is supple-
mented with a ’switch-off’ or ’phase memory loss’ fac-
tor: f = −

∫ t
−∞ dt′H−1~aRF .∇Fo which - in view of the

result found for H consistent with the Krook collision
operator - is simply equivalent to the ’causality rule’
which prescribes the frequency ω in the driven time
response factor exp(iωt) and the resonant denominator
(NΩ + k//v//−ω in the uniform plasma expression, or

~ω. ~̃m−ω in its drift approximation generalisation) to be
replaced by ω+iν. Whereas the collisional contribution
is very small, it plays a crucial role in the evaluation of
the time history integral when integrating over many
crossings through a given point on the closed bounce
orbit: It constitutes the ’memory loss’ factor ensur-
ing that a finite net contribution is obtained for the
resonant contributions to the work done by the driven
electric field on the particles.

Figure 13: Schematic representation of the importance
of decorrelation.

Why this is crucial and how it works can readily
be seen in Fig. 13: due to the periodic nature of the
bounce motion, the sum of the contributions over all
bounce modes is only equivalent to the corresponding
integral over (the stationary phase position) bounce an-
gles if the collisional broadening of the resonance is
wide enough. This brings out a subtle point in the
analysis of the wave-particle interaction: Because of
the large difference between the bounce and the gyro-
frequency (ωb << ωg), it takes thousands of bounce
modes to rigorously account for the magnetic field in-
homogeneity i.e. the corresponding stationary phase
points where the resonant interaction predominantly
takes place (Θ̇=0) are very closely spaced. Yet the
discrete sum on the bounce modes cannot justifiably
be replaced by a bounce integral unless the decorrela-
tion time is short enough i.e. the collision frequency

large enough. And so the very different time scale on
which the gyro and bounce motions occur is crucial to
restore the ’quasi-homogeneous’ nature of localized res-
onances, while the decorrelation needs to be sufficiently
fast to ensure that a net interaction takes place at these
resonance locations when averaging over all the faster
processes. In view of the typical collision frequencies in
hot plasmas, collisions at first sight cannot cause a fast
enough decorrelation to guarantee RF heating to have
a net effect.

Fully accounting for the actual collision operator in
the right hand side of the ’generalised’ Vlasov equation
is not at all a trivial task. Kasilov [53] did the exer-
cise of examining more realistic collision operators and
found that the ’switch-off’ factor H can to first approx-
imation be taken to be H = exp[(t/τ)n] where n = 3
for Cerenkov interaction (Landau damping and tran-
sit time magnetic pumping) and n = 5 for cyclotron
damping. He found that the decorrelation times τ are
significantly shorter than the collison times 1/ν, imply-
ing that particles ’lose’ memory of their phase quickly
enough for RF heating to be efficient in magnetic fu-
sion devices. Although the details of the impact of the
various decorrelation functions differs, the net effect is
the same: the ’kick’ particles receive when crossing the
resonance is similar (see Fig. 14).

Figure 14: Integrated decorrelation functions for n =
1, 2, 3; ζ = τ( ~̃m.~ω − ω) with τ the decorrelation time.

While for thermal particles it is thought that the
details of the actual decorrelation are not too relevant
(to the important exception of what happens near tan-
gent resonance points where two closely spaced reso-
nance points merge into a single one), for too energetic
particles, however, the collisions may still be too unfre-
quent so that their net effective absorption is reduced.
This regime is known as ’superadiabaticity’.

Not only collisions cause a randomization of the
phase. Because of the non-integrability of the orbits
and the non-linearity of the problem, stochastization

352



takes place even if collisions would be absent when
launching RF waves of a few MW in fusion relevant
plasmas. The rich spectrum of modes, each contribut-
ing to the full wave-particle interaction and giving rise
to fast phase variations of the total work done on the
particles, is likely to trigger sufficient decorrelation.

IV. END NOTE

With the dawn of powerful parallel computers, the
degree of realism that can be reached when modeling
the interaction of particles and waves in hot, magne-
tized, inhomogeneous plasmas contained in magnetic
fusion experimental reactors is gradually increasing.
Various techniques are available to highlight the study
of specific aspects of the interaction. Even so, the prob-
lem to be tackled is challenging and a number of aspects
are only starting to be touched upon.

One aspect of importance in the context of wave-
particle interaction is the description of the opposite
of wave heating, namely the onset of instabilities trig-
gered by particle distributions: In present-day wave
and Fokker-Planck descriptions, it is implicitly assumed
that the RF fields are never powerful enough to make
the factor ∂Fo

∂Λ1
+N ∂Fo

∂Λ2
+n ∂Fo

∂Λ3
that appears in the per-

turbed distribution fRF and hence in the expression
for < Q > change sign, while experimentally it is well
known that MHD modes can be triggered when RF
heating is efficient.

Another - even more essential - aspect is the rigor-
ous accounting of the bounce spectrum ensuring that
the dielectric response is properly described, without
artificially giving rise to damping that has to be rejected
on physical grounds: While only the rigorous applica-
tion of the procedure proposed by Kaufman guarantees
the causality to be respected for all modes the plasma
supports, no models based on this procedure are yet
available.

V. A COMMENT ON THE LIST OF REFERENCES

Although most authors in the reference list com-
ment on various subtopics treated in this text - making
a clean separation impossible - the papers most relevant
to read up on the general treatment have references [1-
11], the wave equation is somewhat more the focus in
[12-16] while the Fokker-Planck aspects are the main
subject in [17-23]. Details on the orbit topology and
its role in describing the wave-particle interaction can
be found in [24-32]. The action-angle formalism is dis-
cussed in [33-37]. Comments on how to solve the rele-
vant set of equations - with a focus on accounting for
the realistic geometry - are given in [38-51] while the
role of decorrelation is the key subject in [52-55].
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