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ABSTRACT

A brief overview is given of the techniques adopted
for modeling plasma heating and current drive as well
as the associated particle diffusion. Weaknesses and
strengths of each method are highlighted; references are
provided for those seeking further information.

I. INTRODUCTION: THE BASIC EQUATIONS

Plasma heating by virtue of RF (radio frequency) waves
can be looked at from two complementary points of
view. From the wave’s viewpoint plasma heating is
a loss process. Solving the relevant wave equation,
∇×∇× ~E/k2o = K. ~E + i ~Ja/ωǫo = ~E + i[ ~Ja + ~Jp]/ωǫo
reveals where and to which particles the wave energy
is lost. Here, ~E is the electric field, K is the dielectric
tensor, ω is the driver frequency, and ~Ja and ~Jp are the
antenna and plasma current densities. From the parti-
cle’s point of view, plasma heating is the process of be-
ing accelerated or decelerated by an electric field. The
net diffusion of particles resulting from this is described
by the Fokker-Planck equation, ∂Fo

∂t = Q + C + S − L
in which Fo is the distribution function, Q is the RF
quasilinear diffusion term, C represents the effect of
the Coulomb collisions, S is a source and L a loss term.
Solving the coupled wave + Fokker-Planck equations
involves tackling a 6-dimensional problem. Two - equi-
valent - approaches have been proposed to achieve this:
the trajectory integral technique and the Hamiltonian
formalism [1]. The key is to rewrite both equations
in terms of shared building blocks describing the inter-
action of a particular wave component with a guiding
center orbit. In absence of an external electric field, the
orbits can be expressed in terms of 3 independent con-
stants of the motion ~Λ and 3 angles ~Φ (which - think of
Hamiltonian action-angle variables - vary linearly with
time and describe the rapid oscillatory aspects of the
motion i.e. the poloidal bounce, the toroidal drift and

the cyclotron motions). When wave power is injected,

the ~Λ are no longer constant as a function of time. The
coefficients of the Fokker-Planck equation require re-
moving all fast time scale effects i.e. filtering out all
oscillatory motion. Evaluating the dielectric response
in the wave equation involves integrating over the veloc-
ity space coordinates. This can either be done recasting
the wave equation in a form directly amenable for non-
local treatment [2] or it can be done by writing down a
local expression for the dielectric tensor (see e.g. [3, 4]).
Since the wave and Fokker-Planck equations describe 2
aspects of the same physics, they should be solved as a
coupled system of equations (see e.g. [5] and the re-
ferences therein). Because of the complexity involved,
they are, however, solved separately in most applica-
tions.
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Figure 1: Schematic representation of self-consistent
treatment of particle heating by electromagnetic waves.

II. WAVE DYNAMICS AND RAY TRACING

Lacking powerful computers allowing to solve the
underlying equations truthfully, plasma heating was
historically studied by making simplifications. The ge-
ometric optics or ray tracing method is a typical exam-
ple. Its appealing simplicity results from the fact that
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it decouples the coexisting branches of the dispersion
equation and traces their characteristics independently.
As it traces the evolution of a wave, it is a powerful
technique for getting insight in the details of the wave-
particle interaction. Ray tracing is based on the WKB
assumption that the electric field can be written in the
form

~E ∝ exp[
∞∑

n=0

δn−1Sn(~x)] (1)

where δ is a small parameter and the Sn vary slowly
as a function of ~x. Consider the simple 1-dimensional
equation

E” + k2(x)E = 0 (2)

where E is some electric field component and ′ = d/dx.
When k2 is constant, E describes plane waves propa-
gating in the x-direction: E = Eoexp[±ikx]. When k
varies slowly as a function of x, a solution of the above
wave equation in the form of the proposed WKB ex-
pression can be sought. Assuming k is of order 1/δ and
grouping the terms of like order in δ results in a system
of equations for the Sn [6]:

(S′

o/δ)
2 + k2(x) = 0; 2S′

oS
′

1 + So” = 0 (3)

2S′

oS
′

n + Sn−1” +

n−1∑
j=1

S′

jS
′

n−j = 0;n ≥ 2 (4)

Solving the first 2 equations above yields E± ∝
exp[±i

∫
dxk(x)]/k1/2. The WKB version of the con-

servation law associated with Eq.(1) can be written
(lnP )′ = −2Im(k) where P = Im(E ∗ E′) = Re(k)|E|2.

Reinserting Eqs.(3-5) into Eq.(1) shows that the
WKB solution is a good approximation if |3/4(k′/k)2−
1/2k”/k| << |k2| i.e. that the WKB ordering is justi-
fied when short wavelength waves are studied but that
it breaks down near cutoffs (k = 0) and resonances or
confluences (k′ = ∞).

Figure 2: Dispersion plot with locations at which WKB
breaks down.

Ray tracing is the multidimensional equivalent of
the above scheme. Using the geometric optics definition
~k = ∇ψ of the wave vector (ψ being the wave phase),
the lowest order equation is the Fourier transformed
wave equation for a homogeneous medium,

G. ~Eo = ~k × ~k × ~Eo + k2oK. ~Eo = ~0. (5)

Nontrivial solutions exist when the dispersion equation
D = det(G) = 0 is satisfied. The different dispersion
equation roots and their eigenvectors correspond to the
different decoupled waves the plasma supports. The
evolution of these waves is visualized via the method of
characteristics. The characteristics or rays, by defini-
tion, are given by the equations

d~x/dτ = −∂D/∂~k; d~k/dτ = +∂D/∂~x (6)

where τ is a variable that changes monotonically along
the rays. When the dispersion is satisfied in one point
on a ray, it is satisfied in all others (δD = 0). The
variable τ can be linked to the physical time t through
the transformation dt = ∂D/∂ωdτ . The ray equations
then become

d~x/dt = ∂ω/∂~k; d~k/dt = +[∂D/∂~x]/[∂D/∂ω] (7)

The first equation states that the ray’s velocity is the
energy propagation or group velocity ~vg = ∂ω/∂~k and
the second shows how the wave vector changes as a
result of the background variations sensed by the ray.
The ray equations can, strictly spoken, only be adopted
when the plasma is lossless: as soon as dissipation is
present, D is complex so the ray path is no longer a
real trajectory. To overcome this problem the damping
is assumed to be weak such that the anti-Hermitian
part KA of the dielectric tensor is of order δ compared
to the Hermitian part KH which allows to replace D
by DH in the above equation. A power transport equa-
tion, dlnP/dt = [dlnP/d~x].[d~x/dt] = −2Im(~k).~vg, ge-
neralization of the earlier mentioned conservation law,
is added to the system (see e.g. [7]).

The WKB approximation is very useful when the
wavelength of the waves is short w.r.t. the machine size.
The fact that it breaks down near cutoffs, confluences
and resonances is, however, a drawback limiting the ray
tracing method’s applicability. To overcome such pro-
blems one can try to solve the wave equation without
making any a-priori assumptions on the dependence of
~E on ~x. In the next two sections we discuss how dif-
ferential equations or partial differential equations can
be solved by transforming them into algebraic ones.

III. THE FINITE DIFFERENCE METHOD

Of all methods to tackle partial differential equa-
tions, the finite difference approach is probably the one
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that is most easily implemented. It is frequently used,
both for studying wave and particle dynamics. It con-
sists in replacing the partial differential operators in
the equation and the boundary conditions by their fi-
nite difference counterparts. Doing so at each of the in-
ner grid points and imposing the boundary conditions
at the edge points, the differential problem is hereby
reduced to an algebraic one that can be solved using
standard matrix algebra techniques. Because the finite
difference formulae only involve a small number of va-
lues of the unknown function(s) at neighbouring points,
the matrices of the algebraic system are sparse. Dedi-
cated algorithms accounting for this allow to save CPU
time. Finite difference expressions for the various op-
erators can be taken off the shelf (see e.g. [8]) or be
auto-constructed from the truncated Taylor series ex-
pansion

G ≈

N∑
n=0

Ĝn(x− xo)
n

n!
=

N∑
j=0

αjG(xj) (8)

where xo is the point for which the N-point difference
scheme is constructed, and the coefficient Ĝn can be
identified with the n-th derivative of G at xo if n→ ∞
and if x is sufficiently close to xo. The values of the
function at xo and at N neighboring grid points are
used to write down a linear system of N + 1 equations
for finite difference approximations of up to the first
N derivatives at xo. Non-uniform grids are automati-
cally accommodated for but the best performance for
a given number of points is obtained using a uniform
grid centered on xo. Invoking more neighbors allows
eliminating lower order contributions in the expansion:
The 2-point forward scheme for the first derivative is of
first order. Including the backward contribution allows
to compensate the first order contribution and results
in a second order accurate scheme. Doing the same
for the next neighbors yields the third order scheme
(G−2− 8G−1+8G+1−G+2)/12∆x for the first deriva-
tive, etc.

III.A. Stability of finite difference schemes

Lacking sufficiently general theorems, stability
analysis of a numerical scheme is often done by trial
and error. The diffusion equation ∆ψ(~x, t) = ∂ψ/∂t
can be solved analytically and is sufficiently simple to
perform the stability analysis for various finite diffe-
rence schemes. Let us start from the 1-D version and
impose Dirichlet conditions ψ = 0 at x = 0 and x = 1,
and ψ = ψo(x) at t = 0. Through Fourier analysis one
finds ψ =

∑∞

k=1
αkexp[−k

2t]sin[kx], the Fourier coef-
ficients αk in which are those of ψo. Note that high
k-modes disappear fast from the exact solution when
time advances. Morton and Mayers [9] examined the
numerical stability of various finite difference schemes

for this equation by adopting a uniform grid in both
x = j∆x and t = n∆t, and introducing the amplifi-
cation factor λ to study the evolution of the numeri-
cally obtained kth Fourier mode, ψn

j = λnexp[ikj∆x].

For the explicit forward scheme ψn+1

j = ψn
j + νδ2xψ

n in

which ν = ∆t/∆x2 and δ2xψ
n = ψn

j+1−2ψn
j +ψ

n
j−1, one

finds λ = 1 − 4νsin2k∆x/2. Hence, when ν > 0.5 this
solution numerically grows in time, although the true
solution does not! The fastest growing mode is charac-
terized by a phase jump of π in between successive grid
points. It eventually dominates the numerical solution.
As the spatial grid scale is determined by the spatially
fastest varying modes in the differential system, one is
forced to make sufficiently small steps in time to avoid
these unphysically growing solutions. To avoid having
to take too small time steps, implicit rather than ex-
plicit schemes are adopted. Replacing the forward dif-
ference by a backward difference in the above we obtain
the scheme

−νψn+1

j−1
+ (1 + 2ν)ψn+1

j − νψn+1

j+1
= ψn

j (9)

In contrast to the forward scheme, time stepping now
requires the inversion of a matrix. This extra amount
of work pays off, however: one finds that λ is now of
the form λ = 1/[1 + 4νsin2k∆x/2]. Since 0 ≤ |λ| ≤ 1
for any ν, this scheme is unconditionally stable.

The above two schemes either use 3 points at the
previous time level, or 3 at the new time level. A
straighforward generalisation consists in using all 6 of
these points i.e. in adopting the scheme ψn+1

j − ψn
j =

ν[θδ2xψ
n+1 + (1 − θ)δ2nψ

n] which is known as the θ-
method. This scheme is conditionally stable if θ < 1/2
and unconditionally stable if 1/2 ≤ θ < 1. The first
regime imposes that ν ≤ 0.5/(1− 2θ) while ν is uncon-
strained for the second. Whereas the difference scheme
is usually of first order in time, the scheme is second or-
der accurate both in position and time when θ = 1/2.
This particular scheme is due to Crank and Nicolson.

III.B. Practical example

Applying a finite difference scheme to the time de-
pendent Fokker-Planck equation yields a system of the
form

∂ ~X/∂t = A. ~X −~b (10)

in which the contributions not involving Fo are grouped
in the source term ~b and the values of Fo at the grid
points are stored in ~X. When adopting the Crank-
Nicolson method, the algebraic system takes the form

~X(t+∆t/2) = C−1.~d;C=1−∆t/2A; (11)

~d = [1+∆t/2A]. ~X(t−∆t/2)−∆t~b (12)

If A is time independent, the C matrix can be inverted
once and for all. The source ~d has to be updated at
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Figure 3: Time evolution of a beam population from
the moment the particle source is switched on up to
when the stationary state is reached, at which time the
beam consists of a Maxwellian sub-population and a
non-thermal sub-population centered on the source.

each time step, independent of the actual source term
~b being independent of time or not.

IV. THE FINITE ELEMENT METHOD

IV.A. Variational techniques

Requiring somewhat more preparation and book-
keeping than the finite difference method but allowing
a better control on the overall numerical error, the finite
element method is probably the most robust numerical
technique for solving differential or integro-differential
problems. To discuss this technique, we will again fo-
cus on Eq.(2). The finite element technique relies on a
variational principle [10, 11]. Consider the functional

I(E) =

∫ x2

x1

dx[−E′2 + k2E2] + Ŝ (13)

Ŝ = A2E
2(x2) +B2E(x2)−A1E

2(x1)−B1E(x1) (14)

Allowing for a small variation of E, one observes that
the linear perturbation of the functional is stationary
for the function E obeying Eq.(2) and satisfying the
boundary conditions E′(x1,2) = A1,2E(x1,2) +B1,2/2.

The Ritz approach to solve the equation consists
in writing E in terms of a set of base functions E(x) =∑J

j=1
cjΘj(x) and imposing I to be stationary for all j:

∂I/∂cj = 0. Provided the integrals involving the base
functions can be evaluated, this reduces the problem
of integrating the wave equation to solving the (linear)
system for the cj . Although base functions allowing to
evaluate the integrals over the full domain exist (see
section V), one often prefers to subdivide the interval
[x1, x2] into a large number N of sub-regions and to use
low order polynomials with restricted range such that
the integrals can be approximated e.g. using the inte-
gration method of Gauss [8]. When J base functions
are considered in each interval, a total of NJ linear
equations for the NJ unknown coefficients is obtained

by imposing all stationarity conditions. In case the
grid is so dense that coefficients of the original equa-
tion hardly vary in a single finite element, their varia-
tion can be omitted altogether and the integrals only
involving base functions can then be done once and for
all.

The Ritz approach seems cumbersome as prior to
actually solving the equation, one first needs to find
the functional I and derive the stationarity condi-
tions. These 2 steps can be omitted when adopting the
Galerkin approach, which consists of multiplying the
differential equation with each of the base functions Θj ,
and integrating over the domain of interest. The resul-
ting system is again a linear system that can be solved
to find the cj . The disadvantage of this strong approach
is that the Θj need to have meaningful nth derivatives
for an nth order equation. Lower order polynomial base
functions can be chosen when tackling the problem in
its weak form i.e. after removal of the highest order
E-derivative terms from the integrand by performing
partial integrations. Imposing the boundary conditions
via the surface term, one readily finds that the weak
Galerkin approach is equivalent to the Ritz approach.

Figure 4: RF wave pattern for (H)-D heating at 3.45T
and 51MHZ in JET, computed using finite elements on
a 2-D mesh of triangles. The RF field propagates from
the antenna on the low field side to the core, where it
is damped near the central H cyclotron layer.

IV.B. Natural vs. essential boundary conditions

Natural boundary conditions can directly be de-
rived from the weak variational form of the equation.
The strong form is obtained by multiplying the equa-
tion by a sufficiently smooth test function G and inte-
grating it over a finite interval. Partial integration is
used to remove higher order derivatives from the un-
known function and ”transfer” them to derivatives of
the test function. For a 1D differential equation of order
n, n/2 derivatives can be removed from the unknown.
The surface terms arising from these partial integra-
tions involve the test function itself as well as its higher
order derivatives up to n/2−1. Choosing a test function
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with only 1 nonzero mth derivative (0 ≤ m ≤ n/2− 1)
at one of the two edges provides a set of n/2 natu-
ral boundary conditions at each edge, corresponding to
”fluxes” entering or leaving the domain of interest. Im-
posing these at the two edges provides the exact number
n of boundary conditions to uniquely define the solu-
tion (see e.g. [12]). Natural boundary conditions are
intimately connected with the equation. Deriving the
natural boundary conditions of the Laplace equation in
the domain (x1 ≤ x ≤ x2, y1 ≤ y ≤ y2, z1 ≤ z ≤ z2) by
multiplying the equation by a test function G, integra-
ting over the volume, performing a partial integration
and identifying G = 1, one finds

∫
dydz

∂ψ

∂x
|x2

x1
+

∫
dxdz

∂ψ

∂y
|y2

y1
+

∫
dxdy

∂ψ

∂z
|z2z1 = 0

(15)
imposing that the imposed Neumann boundary condi-
tions should be consistent with the equations i.e. that
they must guarantee that the net influx balances the
net outflux, no damping being present.

Boundary conditions imposed on lower order (<
n/2) derivatives cannot be derived from the equation
itself, and cannot be imposed via the surface term. To
impose such conditions another procedure is required.
One common solution is to choose the base functions
in such a way that the conditions in question are auto-
matically fulfilled. Because of their more basic nature,
the second type of boundary conditions is known as
essential conditions.

To solve a differential equation, we transformed it
into a linear system. When the original equation is
an integro-differential instead of a differential equation,
exactly the same method can be used, the only diffe-
rence being that also integrals of products of base func-
tions and not just derivatives appear inside the varia-
tional integral. In that case, the linear system is gener-
ally not sparse.

IV.C. Numerical pollution

The finite element technique relies on the local ap-
proximation of the solution of an equation by a sum
of simple base functions. Aside from truncation errors
which automatically creep into the system, such ap-
proximations can lead to numerical pollution i.e. to
the excitation of modes lacking a physical counterpart.
The vacuum wave equation

(k2// − k2o)Ex + ik//E
′

z = 0 (16)

(k2// − k2o)Ey − Ey” = 0 (17)

ik//E
′

x − k2oEz − Ez” = 0 (18)

suffices to demonstrate this effect [13]. In the above,
it can be noted that Ex plays a different role than Ey

or Ez: the highest order derivative of Ex appearing

in the system is one order lower than that for Ey and
Ez. Knowing that the exact solutions of the vacuum
wave equation are proportional to exp[ikxx] where k

2
x =

k2o − k2// we make the ansatz ~E(~x) =
∑

j exp[ikxxj ]~ηj
where the xj are the grid points and ~ηj the vectors of
base functions. The discretized dispersion equation is
the condition for having nontrivial solutions. Adopting
the obtained equation for linear base functions, Sauter
demonstrated that the physical root is well approxi-
mated by two of the numerical dispersion roots when
the grid is sufficiently refined (small enough kx∆x) but
that the agreement is less good when kx∆x well ex-
ceeds 1. A third, purely numerical, root further spoils
the solution. Reminding that Ex is differentiated one
time less in the wave equation, Sauter subsequently con-
sidered constants for Ex while using linear functions
for Ey and Ez. Although one expects intuitively that
such cruder procedure would lead to less accurate re-
sults, he demonstrated that - quite on the contrary -
the solution is now no longer polluted. One might hope
that the spectral pollution problem automatically re-
solves itself when a more refined description (higher or-
der polynomials as base functions) is used. It turns
out that this is not the case. One finds exactly the
same problem when using higher order polynomials for
all components. Again, pollution can be removed choo-
sing polynomials for Ex which have 1 degree of freedom
less than those taken for Ey and Ez. Adding finite Lar-
mor radius (temperature) effects to the wave equation
destroys the special role Ex plays and eliminates this
particular problem of pollution.

IV.D. Grid refinement techniques

One of the peculiarities of finite elements is that
is allows squeezing and stretching local finite elements,
which enables describing phenomena with vastly dif-
ferent length scales accurately by merely reshuffling
the adopted grid but without touching the structure
of the local equations. Hence, rather than opting for
a more complete set of base functions enabling to cap-
ture more dynamics on a fixed grid but increasing the
number of local ’projection’ equations, code developers
often prefer to refine the grid at locations where it is
needed while keeping the base functions as simple as
possible. This guarantees that CPU memory is opti-
mally used: at every location the adopted grid is just
fine enough to reach the desired accuracy level, but re-
gions not requiring a fine grid are not densely popu-
lated with grid points. Various grid refinement tech-
niques are available in the literature, and more often
than not grid generating software can be found on the
www. One of the classical techniques of grid refinement
is the so-called ’red-triangle/green-triangle’ technique
[14] adopted when subdividing the domain of interest
for a 2-D problem into a set of triangles. When local
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gradients are too steep inside a triangle (red triangle),
it is subdivided into 4 child-triangles born when divid-
ing each of the 3 sides of the parent-triangle in 2 and
connecting these 3 midpoints. If refinement in a neigh-
boring triangle is required as well, the same technique
is applied there while if no refinement is needed, the
midpoint of the side is just connected to the opposite
triangle corner (green triangle) to ensure the topology
of the mesh is not changed.

Figure 5: ’Red-green triangle’ grid refinement scheme.
Thick solid line: ’parent’ triangle, subdivided into 4
child-triangles. Dotted lines: neighbor triangles with
’red’ or ’green’ subdivisions.

V. SPECTRAL METHODS: DIRECT FOURIER RE-
PRESENTATION

As the set of exponential functions exp(ikx) is com-
plete, any (sufficiently continuous) function of the vari-
able x can uniquely be represented by its k-spectrum.
In a finite domain [xo, xo + Lx], the coordinate x can
then be related to the angular variable θ = 2πx/Lx

and the spectrum of modes m is discrete. Although
any function can be represented using the exponen-
tial set with a global error that is arbitrarily small,
the spectrum of non-periodic functions decays so slowly
as a function of m that one can wonder if the spec-
tral method is the appropriate tool for tackling pro-
blems involving such functions. At the edge disconti-
nuities, the series will never converge, although taking
enough terms allows to find the correct value up to
very close to the edge (Gibbs phenomenon). When
all functions are periodic, the Gibbs phenomenon is
absent and spectral representation is more appropri-
ate. Consider again Eq.(2), d2ψ/dθ2 + M2(θ)ψ = 0,
for convenience rewritten in terms of the angular vari-
able θ. Finding the Fourier spectrum of M2, M2(θ) =∑+∞

l=−∞
M2

l exp[imθ], and projecting on the exponential
base yields

−m2ψm +
+∞∑

l=−∞

M2
l ψm−l = 0 (19)

for each m in the spectrum. Truncating the spectrum of
the coefficientM2 yields a sparse but infinite set of non-
trivial equations to be solved simultaneously. For large
|m| (m2 >> M2

l ), the first term dominates the others,
guaranteeing the Fourier series of ψ is convergent and
justifying to truncate the spectrum. Through M2, the
physics of the problem dictates the minimal number of
modes to be retained in the truncated spectrum: For
the simple case of a constant M2, the above equation
prescribes that ψm must be zero unlessm2 =M2. More
generally, this filtering makes that part of the physics is
not captured by the model if the spectrum is truncated
at a too low m-value (see also in the next section). A
practical example is the treatment of electron (Landau
+ TTMP) damping in the ion cyclotron range of fre-
quencies: the damping strength being proportional to
the square of the local perpendicular wave number k⊥,
this damping is underestimated by a model that does
not properly resolve the Bernstein wave mode, a mode
for which k⊥ is of the order of the inverse of the ion
Larmor radius.

The spectral representation is commonly used for
numerical applications posed in finite domains but is,
by its nature, best suited to be adopted in wave pro-
blems. A spectral method in periodic variables is often
combined with a finite element representation in the
non-periodic variables.

The SciDAC project [15] gave a major thrust to
RF modeling in the USA. Thanks to powerful com-
puters and the adoption of Fourier techniques, wave
problems have been solved that were off-limits before:
Brambilla’s TORIC has been upgraded to enable ac-
counting for up to 104 poloidal modes simultaneously
so that the fate of short wavelength branches can now
be examined in detail (see e.g. [16] ), and Jaeger’s
integro-differential AORSA code now solves the wave
equation both for Maxwellian as for non-Maxwellian
populations (see e.g. [17]).

VI. FAST FOURIER TRANSFORM & ALIASING

The spectral method relies on the fact that the
Fourier spectra of the coefficients of the equation are
known. In general the coefficients are known locally,
but the spectrum is not. Finding the poloidal spec-
trum of functions needed to solve the 2-D or 3-D wave
equation in tokamak geometry can be done relying on
the smallness of the minor radius ap w.r.t. to the major
radius Ro, by writing out the various terms explicitly
up to a given order in the inverse aspect ratio ap/Ro.
This procedure soon becomes cumbersome, however,
and since ap is not so small w.r.t. Ro, many terms
in the development should be retained for a reasonable
approximation. In practice, the Fourier components
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Fm = 1

2π

∫ 2π

0
dθexp[−imθ]f(θ) of any needed quantity

f are most often evaluated numerically. Adopting a
uniform grid, the Fourier integral is approximated by
the sum Fm ≈ 1

J

∑J
j=1

exp[−imj∆θ]f(j∆θ);∆θ = 2π
J

This technique is known as the fast Fourier trans-
form (FFT). Note that the predicted value for the mth
Fourier component is identical to that of m−nJ where
n is any integer. This means that the above proce-
dure artificially misrepresents high m-modes by their
lower mode number spectrum counterparts for which
J/2 < m − nJ ≤ J/2, an effect known as aliasing (see
also [18]). To avoid aliasing, the whole spectrum should
fall inside the interval ]− J/2, J/2]. The corresponding
grid has at least 2 mesh points per wavelength for the
shortest wavelength mode in the system.

Figure 6: The importance of ensuring the full wave
spectrum is sampled: power deposition profiles ob-
tained truncating the poloidal mode spectrum at |m| =
31, |m| = 80, |m| = 127 and |m| = 255 (TORIC, Cour-
tesy P. Bonoli).

VII. MONTE CARLO AND PARTICLE-IN-CELL
TECHNIQUES

Integration in multidimensional space can be done
efficiently relying on the Monte Carlo technique, which
in contrast to adopting a regular grid uses a set of uni-
formly distributed random points. Adopting this pro-
cedure, the integral of a function in hyperspace is pre-
dicted up to errors of order N−1/2, where N is the num-
ber of randomly generated positions, irrespective of the
number of dimensions (while the accuracy of the pre-
diction made on a uniform grid scales as 1/N1/d, where
d is the number of dimensions). In order to simultane-
ously solve the wave and the Fokker-Planck equations,
Hedin developed the SELFO code. He upgraded the
LION wave code [15] to account for the actual drift or-
bits of the particles and for non-Maxwellian distribution
functions by locally approximating the dielectric tensor
using a series of hat functions [16], and interfaced the
resulting code with the FIDO Monte Carlo code [17].

The FIDO Monte Carlo method advances a large num-
ber of test particles in time ~Λ(tn+1) = ~Λ(tn) +∆~Λ and
accounts for wave-particle interaction and for Coulomb
collisions assuming the ~Λ are stochastic variables whose
expectations E and co-variances C can be inferred from
the orbit-averaged Fokker-Planck equation:

E[∆Λi] =
dµi

dt
∆t;C[∆Λi,∆Λj ] =

dσij
dt

∆t (20)

in which < ... >=
∫
d~ΛFo... is the ensemble average,

µi =< Λi > and σij =< (Λi − µi)(Λj − µj) >. The
Monte-Carlo operator becomes

∆Λi =
dΛi

dt
∆t+

∑
k

Aikξk(∆t)
1/2 (21)

in which
∑

k A
ikAjk = dσij/dt and where ξk are uncor-

related stochastic variables with zero expectation value
and unity variance.
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Figure 7: The principle of random walk / diffusion.

VIII. CONSERVATION LAWS

Conservation laws are often helpful when check-
ing the precision of a computation. For Eq.(2) one
readily sees that S = Im[E ∗ dE/dx] is conserved
when k2 is real i.e. in absence of damping. When
damping is present the drop in flux S across the con-
sidered interval equals the integrated absorbed power
Pabs = Im(k2)|E|2. In differential form the thus ob-

tained conservation law is of the form ∇.~S + Pabs = 0.
Adopting a variational approach one can formulate the
wave equation in such a conservative form i.e. in a
form which readily yields this conservation law upon
substituting the sufficiently smooth test function vec-
tor by the electric field (see e.g. [18]). The Fokker-
Planck equation is written in the above conservative
form from the start: rewriting it in variational form
(see e.g. [23]), one can express the conservation of the
total number of particles (test function G = 1) or of
the energy (G = mv2/2). When the wave and Fokker-
Planck models are consistent one with the other, the
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conservation laws of the 2 equations share the expres-
sion for the absorbed wave power (see e.g. [1]).

Of course, conservation laws merely allow to check
the numerical accuracy of a model, but do in themselves
not constitute a check on the correctness or on the ap-
plicability of the model itself . Aside from performing
convergence tests to ensure the shortest scale lengths
are well captured, a-posteriori checks of the assump-
tions underlying the derivation of an equation should
be performed: it is e.g. common to adopt a truncated
finite Larmor radius (FLR) expansion to include tem-
perature effects but one rarely discards the predictions
on the fate of the power carried by the short wave-
length (Bernstein) modes away from the (confluence)
region, notwithstanding the fact that the wave violates
the starting FLR assumption ...

IX. DECIDING ON A NUMERICAL STRATEGY

The speed and memory size of present day compu-
ters allow to pursue a high degree of realism in plasma
physics models. Because of this high level of sophisti-
cation, it is crucial to be able to distinguish between
actual physics and numerical artefacts. Jaun and col-
laborators have developed a very didactic, interactive
and flexible tool to highlight the perspectives and draw-
backs of various numerical schemes [18]. Existing com-
mercial or freeware software libraries such as IMSL,
HSL, NAG and NetLib allow to concentrate on physics
instead of on numerics. In case no ready-made subrou-
tines can be pulled off the shelf, softwares such as OC-
TAVE, MATLAB and MATHEMATICA are of great
help in constructing ones own numerical schemes.
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