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I. INTRODUCTION

The measurement of plasma quantities is a difficult
task since the plasma cannot be treated like normal
material. The properties of a plasma with an elec-
tron density ≤ 1× 1020 m−3 and temperatures up to
several keV asks for sophisticated probes. Any mea-
surement of plasma quantities with solid probes will
yield interactions with the plasma and cause a pertur-
bation of the measured quantity. Inside a hot plasma
those methods are not applicable, since they cause
a contamination which, on the long run, ends in a
disruption of the plasma. Therefore it is necessary
to use optical properties as refraction and reflection
as tool for plasma diagnostic. Plasmas in fusion ex-
periments are transparent when looked with human
eyes. However, choosing the right wavelength where
refraction effects are large, plasma properties can be
accessed. The propagation of millimetre and sub mil-
limetre waves in a plasma is quite sensitive to re-
fraction and reflection. In addition those waves are
less demanding regarding their installation require-
ments on fusion facilities either tokamak or stellera-
tor due to the little space requirements. Microwave
radiation can easily be guided in wave guides, either
oversized or fundamental ones, which can be bend
around corners and which widens the area of opera-
tion. Furthermore due to the rapid growing applica-
tion in telecommunication, active as well as passive
microwave components have become less expensive
and more powerful.
Refraction and reflection allows to obtain informa-
tion on the plasma density from the refractive index,
when actively probed by microwaves. An other way
of diagnosing a hot plasma is the measurement of the
emitted radiation in the microwave range. With both
methods main plasma parameters as the electron den-
sity and the electron temperature can be measured
quite accurate and reliable. However, also the mea-
surement of fluctuations in density and temperature
and the determination of the plasma current density
are possible with sophisticated microwave diagnos-
tics. Using more than one observation location and
performing cross correlation analysis yields informa-
tion on the propagation of the plasma and the prop-
erties of turbulent structures can be achieved under
certain assumptions. Those measurements contribute
a lot on the understanding of turbulent transport and

the interaction of different scales from microscopic
(turbulence) to macroscopic (flows).
In the following section the propagation of electro
magnetic waves in a plasma is reviewed. Sections III
to VI are devoted to different diagnostic techniques.
Section VII gives an outlook on future applications.

II. THE DISPERSION RELATION FOR THE
PROPAGATION IN PLASMAS

Starting point is the Appleton–Hartree equation [1]
which relates the refractive index N to the probing
frequency ω.

N2 = 1− A · (1−A)

1−A− 1/2B2sin2θ ± C
(1)

A =
ω2
pe

ω2
; B =

ωce
ω

C =
[(

1/2B2sin2θ
)2

+ (1−A)
2
B2cos2θ

]1/2
Here ωpe denotes the plasma frequency and ωce the
cyclotron frequency:

ωpe =

√
nee2

ε0me
; ωce =

eB

meγ
(2)

γ takes into account relativistic effects, e denotes the
electron charge, me the electron mass, ne is the elec-
tron density andB the local magnetic field. The angle
θ in Eq. 1 denotes the angle between the wave vector
and the magnetic field.In the case θ = 0 the propa-
gation is parallel to the magnetic field. For θ = π/2
we have a perpendicular propagation. In this case
two solutions for the refractive index are possible, de-
pending on whether the electric field vector of the
wave E is parallel to the magnetic field (O–Mode)
or perpendicular (X–Mode). The refractive index for
both cases is given in equ. 3.

O −Mode N2 = 1−
ω2
pe

ω2
(3)

X −Mode N2 = 1−
ω2
pe

(
ω2 − ω2

pe

)
ω2
(
ω2 − ω2

pe − ω2
ce

)
All microwave diagnostics studying the propagation
of millimetre waves are based on these equations, re-
gardless of being applied in fusion plasmas, weather
broadcast, or climate research.
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III. INTERFEROMETRY

A standard tool for measuring the electron density
ne within a plasma is an interferometer. In this
case we have the refractive index for X–Mode which
is investigated with the additional assumption that
ωce/ω � 1, neglecting the effects of the magnetic
field. The measurement of the electron density is
done by comparing the phase change of two wave
trains, one travelling through the plasma, and an-
other travelling through vacuum or air and which is
used as reference. The phase change for a given wave
number k an frequency is then given by:

∆Φ =

∫
(kplasma − k0)dl =

∫
(N − 1)

ω

c
dl (4)

The above equation can be rewritten with the use of
the critical electron density nc at the cut–off layer
where N = 0. From Eq. 2 we achieve the critical
density as

nc =
ε0meω

2

e2
(5)

yielding for the phase change:

∆Φ =
ω

c

∫ (√
1− ne

nc
− 1

)
dl

≈ ω

2cnc
·
∫
nedl (6)

Here, it has been assumed that ne � nc, truncating
the expansion of the square root expression after the
first term. Such a phase change can be measured by
an interferometer.
Several types of interferometers exist. Two arm in-
terferometer like Michelson Interferometer or Mach-
Zehnder-Interferometer (Fig. 1) and multiple beam
interferometer as Fabry–Perot–Interferometer.

Beamsplitter MirrorLight Source

Plasma

Detector

Detector

Figure 1: Schematic view of a Mach–Zehnder Inter-
ferometer

The major difference between the Michelson– and the
Mach–Zehnder–Interferometer is the fact that the ref-
erence as well as the plasma path are only passed once
in the Mach–Zehnder set–up. Two major drawbacks
of all those types of interferometer are:

• The ambiguity of phase changes for ∆Φ = n · π

• Amplitude variations due to refraction or absorp-
tion of the beam

To overcome those problems the frequency of the ref-
erence wave is shifted with a rotating grating. The
detector will mix the two incoming frequencies from
the plasma path ω1 and the reference path ω2 and
yield an intermediate frequency ∆ω0 = ω1−ω2 and its
higher harmonics. Such a detection scheme is called
a heterodyne receiver. An additional phase change
due to the plasma yield ∆ω = ∆ω0 + dΦ/dt. This
allows a distinction between positive and negative
phase changes.
To allow for interferometric measurements of ne the
following conditions have to be fulfilled.

• Sufficient power level for splitting the beam into
radial separated chords and enough to detect at
the same time 1 % modulation with a time reso-
lution ≤ 100 µs

• No cutoffs or resonances in the plasma for the
desired frequency deduced by the maximum ne
which can be achieved

• Small angular deviation of the beam (α ≤
10 mrad)

An interferometer–polarimeter of Mach-Zehnder
type [3] using a HCN-laser operating at a frequency
of 800 GHz was installed at TEXTOR (see Fig. 2)
where the signals are detected by pyroelectric detec-
tors. As can be seen from Eq. 6 the interferometric
phase shift is integrated along the line of sight yield-
ing line averaged densities. However, of importance
is the local electron density and its profile. To fulfill
an accurate calculation of the local density from the
phase shift, tomographic methods have to be used.
The phase shift has to be measured within a poloidal
cross section of the tokamak with several chords at
different radial position. Therefore assumption about
the shape and symmetry of the plasma have to be
made. With an inversion procedure (Abel–Inversion)
a density profile is calculated.
A draw back of the previous mentioned short wave-
length is the sensitivity to vibrations of the interfer-
ometer frame. Already small vibrations yield a dis-
turbance of the path length and therefore an error
in the phase measurement. To overcome this prob-
lems (i) the optics has to be mounted in a rigid frame
or (ii) two different wavelength should be used. The
shorter wavelength measures the disturbance of the
diagnostic and the longer wavelength measures the
refractive effects due to the plasma. In more sophis-
ticated experiments it is even possible to detect the
disturbance of the path length and try to adjust the
path length by a moving mirror. Another problem
is the bending of the chords. The plasma acts it-
self as a lens. Specially in the case of steep density
gradients at the plasma boundary the changes in the
refractive index will be quite large. As a consequence
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Figure 2: Schematic view of the nine channel HCN–
interferometer–polarimeter as it was installed at
TEXTOR. The thick lines show the optical path of
the nine vertical, the horizontal and the reference
channels.

the optical path length will increase and yield larger
phase delays or the deviation will result in a loss of
signal. In this case the inversion procedure will re-
sult in density profiles with higher edge densities and
smaller one in the plasma center. From the geometri-
cal point of view a multi chord interferometer is best
suited for devices with circular plasma cross section.
In D-shaped plasma only a few chords can be real-
ized, mainly due to the restricted access from the top
of the vessel. In this case other diagnostics are needed
to calculate the required density profiles.

A. Dispersion Interferometry

The main draw back of a Mach–Zehnder or Fabry–
Perot interferometer is the sensitivity to vibrations,
specially for large devices like ITER and DEMO. This
drawback can be overcome by using a second inter-
ferometer with a different wavelength and operated
at the same path as the first one. or by using a dis-
persion interferometer [4, 5] which is not sensitive to
phase changes due to vibrations. Probing and refer-
ence path use the same geometrical path but at dif-
ferent frequencies. The initial beam at frequency ω
is partly doubled in frequency. Therefore frequency
doubling crystals are used. Both waves at 1st and 2nd

harmonic propagate through the plasma. After pass-
ing the plasma the 1st harmonic is again doubled in
frequency. In a next step the original frequency is fil-
tered out. The interference pattern of the two waves
at 2nd harmonic are detected by a photo detector (see

Fig. 3). The phase difference is the difference be-
tween twice the phase of the fundamental frequency
and the phase of the 2nd harmonic travelling through
the plasma an can be expressed by:

∆Φ =
ω

c

∫
[N(ω)−N(2ω)]dl (7)

With the equation for the refractive index NO the
phase change can be written as:

∆Φ =
3e2

8πε0mec2
λ < nel > (8)

with λ being the probing wavelength and < nel > the
line integrated density. It should be noted that ∆Φ
increases with the used wave length. However, a large
λ will be more limited by refraction. A compromise
for the used wave length is found in CO2-Laser at
28.3 THz corresponding to λ ≈ 10 µm. Such a system
is installed e.g. at LHD [6] for density control. It has
a temporal resolution of 300 µs and a sensitivity of
< nel >min≤ 3× 1017 m−2.
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Figure 3: Principle scheme of a dispersion interfer-
ometer from [7].

IV. POLARIMETRY

Due to the magnetic field the refractive index is dif-
ferent for the two circular components of a linear
polarized incident wave. In the case of a plasma
current, generating a poloidal magnetic field, the
interferometer–polarimeter set–up shown in Fig. 2 is
sensitive to the parallel component of the poloidal
magnetic field [3]. For a propagation of the wave par-
allel (θ = 0o) to the magnetic field component, the
refractive index can be achieved from Eq. 1 retaining
only first order terms in B, then we get:

N2
X,O ≈ 1−A±ABcosθ (9)

The difference in N causes a different propagation
speed of the O- and X-mode wave, which causes a
rotation of the electric field vector of a linearly polar-
ized wave (Faraday Rotation). This is a rotation of
the polarization plane. The phase change along the
propagation direction (z–axis) is given by:

∆Φ =
ω

c
(NX −NO) z (10)
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The Faraday rotation angle α depends only on Bdl
and ne. It can be expressed by the measured phase
change and making use of Eq. 9 where only the first
order terms in ωce/ω are considered.

α =
∆Φ

2
=

e

2 me c

∫
ne B · dl

ne (1 − ne/nc)
1/2

≈ e

2 me c

∫
1

nc
· neB · dl (11)

This last approximation is valid if the ratio of electron
density to critical density (nc) is less than one. With
the measurement of α the poloidal magnetic field can
be estimated. The approximation is only depending
on nc which itself is a function of the used wavelength
and the magnetic field, so that a numerical approach
can be expressed by

α [degree/cm] = 1.5× 10−17 λ2 [mm]

× ne
[
cm−3

]
B [Gauss] (12)

After the measurement of the poloidal magnetic field
at different radial positions the plasma current profile
j(r) as well as the q-profile can be estimated.

V. REFLECTOMETRY

Reflectometry measurements are based on the reflec-
tion of a probing microwave (ωref ) at a cutoff layer
(Rco) corresponding to a cut-off frequency (ωco). The
phase of the reflected wave contains information on
the position of the cut-off layer and information on
the density fluctuations [8]. At Rco the refractive in-
dex is N = 0 and depends on the polarization of the
launched microwave (e.g. selected by the orientation
of the launching and receiving antenna). The phase
change can be calculated by Eq. 13,

Φ =
2ω

c

∫ Rco

Redge

NX,O(R,ω)dR− π

2
(13)

where c denotes the speed of light and NX,O the re-
fractive index for X– or O–mode polarization as de-
duced from Eq. 3. At the Rco a phase jump of π/2 will
arise. Reflectometry can be done in O–Mode and X–
Mode, respectively. In case of X–Mode reflectometry
NX is a function of the magnetic field and it has the
advantage that ne(r) = 0 at ωco = ωce which offers
a stable initialization condition for the measurement
of density profiles. Another advantage of X–Mode re-
flectometry is the larger access in the radial range of
the density profile. With O–mode reflectometry only
half of the profile can be measured, since a reflec-
tometer can not look behind the horizon. Concern-
ing its accuracy the radial resolution depends on the
density scale length and the fluctuation level. Reflec-
tometry is therefore a good tool for plasma density
profile measurements in the gradient region and for

density fluctuation (turbulence) measurements. The
detection of the reflected signal is similar to interfer-
ometry. The reflected and the reference signal at a
slightly different are mixed. The resulting intermedi-
ate frequency serves together with the carrier as input
for a quadrature detector which produces two output
signals with 90◦ phase difference for each antenna.
An overview on the diagnostic potential of the reflec-
tometry can be found in [9].

Figure 4: Schematic view and principal of the mea-
surement of the heterodyne poloidal correlation re-
flectometer at TEXTOR. Microwave switches not
shown in the figure allow to switch between signals
from top and midplane array.

A. Density Profiles

The determination of the density profile was some-
what difficult in the past due to the large sweep times
of the available microwave generators. The sweep
time of the generators should be less or equal the
life time of the fluctuation which is in the order of
10-20 µs. Today’s technique allows a sweep time less
than 10µs using hyperabrupt varactor tuned oscilla-
tors (HTO) [10, 11, 12]. In this case the fluctuations
can be considered as frozen during one sweep of the
oscillator. For profile measurements both polariza-
tions can be used. Independent from the polarization
the net time delay (τ) is given by:

τ(f) =
dΦ

dω
= fB(

df

dt
)−1 (14)

Here fB denotes the beat frequency of the refer-
ence and the reflected wave and dΦ/dω(f) denote the
group delay. It is essential to know the frequency re-
sponse on the evolution of the generator voltage, be-
cause it causes uncertainties in the estimation of the
time delay. The density profile is reconstructed from
an initialization procedure, which in case of O-mode
could be quite complicated. Furthermore the sam-
pling rate for such a system should be large, so that
the fluctuations can be treated as frozen. In today set
ups a sampling frequency up to 100 MHz and more is
necessary to have a good frequency resolution during
one sweep.

B. Turbulence and Rotation Measurements

In general reflectometry is most sensitive to long
wavelength turbulence. With one launching and re-
ceiving antenna information on the phase fluctuation
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can be retrieved from reflectometry. This can be re-
lated to density fluctuations as long as the phase fluc-
tuation are small and not saturated. However, at
the plasma edge the turbulence level becomes large
and small angle scattering effects disturb the mea-
surement. It makes the estimation of the turbulence
level more complicated and sometimes even impossi-
ble.
The use of more than one receiving antenna sur-
rounding the launcher allows the calculation of cross
correlation as function of the toroidal and poloidal
separation of antennae. The so called Correlation
Reflectometry (CR) is often used to measure tur-
bulence properties. This can be done either by us-
ing (i) an array of antennae measuring at toroidally
and/or poloidally separated positions or (ii) by two
reflectometers operating at different frequencies to
obtain radial information on the turbulence structure
and on the radial transport. A combination of both
methods is possible as well. Using antennae arrays
poloidally or toroidally separated, as shown in Fig. 4,
yield further information on the poloidal or toroidal
structure of the turbulence, e.g. poloidal correlation
length (λ⊥) and decorrelation time (τdc). However,
the propagation time ∆t between receiving antenna
must fulfil the condition ∆t = ∆s/v⊥ ≤ τdc, where
∆s is the distance between the correlated antennae.
In Fig. 5 an example from poloidal CR shows the
complex amplitude and cross phase spectra deduced
from the quadrature detectors.
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Figure 5: (a) Amplitude spectrum obtained from re-
flectometry showing the different fluctuation compo-
nents. (b) The different propagation velocities are
determined from the slopes in the cross phase spec-
trum.

From the complex amplitude spectrum different types
of fluctuations can be recognized. Most pronounced
are broad band fluctuations (BB)and the quasi coher-
ent modes at low and high frequency (QC LF and QC
HF). The different propagation velocities of the quasi

coherent mode are obvious from the different slopes in
the cross phase spectrum. For signals from poloidal
separated antennae the angular velocity (Ωturb) of the
turbulence is measured from the crossphase (Φ) be-
tween the signals from two or more antennae [13].

Ω =
2π α

dΦ/df
, (15)

where α is the angle between the antennae. With the
assumption that the additional phase velocity of the
turbulence is small compared to the poloidal plasma
velocity Ωturb ≈ ΩPlasma is valid. From the knowl-
edge of the diamagnetic drift velocity (vdia) the esti-
mation of the radial electric field Er = (vturb−vdia)·B
where vturb = Ωturb · rc, is possible. Here, rc is the
radius of the flux surface where the reflection takes
place. Furthermore fluctuations in Ωturb can be de-
duced if the sampling frequency is large enough com-
pared to the frequency of the instability under inves-
tigation.
Recently it has been demonstrated that poloidally
and toroidally separated antennae allow the determi-
nation of the inclination angle of the magnetic field
line at rc [14]. The projection of the distance of differ-
ent antennae combinations on the direction of v⊥, B⊥
(see Fig. 6) yield different values for delay time ∆t.
With the assumption of a constant v⊥ the ratio of the
measured delay time is proportional to the magnetic
pitch angle.
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Figure 6: Schematic view of an antennae array. It
shows the projection on the v⊥ axis for combinations
BD and EC.

An alternative method to deduce plasma velocity is
the Doppler reflectometry [15]. Here the plasma ve-
locity is deduced from the Doppler shift of the re-
ceiving microwave. Instead of measuring the 0th or-
der reflection which is used in standard reflectometry
higher order diffraction is used for Doppler reflectom-
etry (see Fig. 7). In most cases a tilted antenna is
used for the launching and receiving microwave. In
this case the tilting angle is adjusted to measure the
-1st order of diffraction and a monostatic antenna ar-
rangement is sufficient. Such an set up is sensitive to
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certain wave number values (k⊥) depending on the
tilt angle.

k⊥ = 2k0 sinαtilt (16)

Here k0 is the wave number of the probing microwave
in vacuum. If the reflection layer in the plasma is
propagating with a velocity v⊥, a frequency shift of
∆ω = −v⊥ · k⊥ is observed. As for CR, Doppler re-
flectometry is able to deduce the radial electric field
when the phase velocity of the turbulence can be ne-
glected. Doppler reflectometry extents the measure-
ment of turbulence properties to higher k⊥ values
and opens the window to electron temperature gra-
dient driven turbulence. In case several Doppler re-
flectometry systems are operated at different frequen-
cies cross correlation analysis can provide information
on radial wavelength of the turbulence. A challenge

Figure 7: Principle of Doppler reflectometry. The 1st

order diffraction contains information on the propa-
gation of the turbulence.

for Doppler reflectometry is the development of non-
mechanical steerable antennae which can work at dif-
ferent centre frequencies and where a small variation
of the centre frequency causes a wide variation in the
tilt angle.
A further diagnostic mainly to study the small scale
fluctuations is the upper hybrid resonance (UHR)
scattering [16, 17]. The principle relies on the
backscattering of a launched X-mode microwave at
the UHR. After mixing the local and the time delayed
received waves a spectrum is obtained. The ampli-
tude of the spectral components depends on the time
delay between the launched and the received wave
and allows to estimate the wave number of density
fluctuations. At the UHR also a conversion from X-
to O-mode takes place. The backscattered O-mode
component contains information on magnetic fluctu-
ations. If the receiving X-mode antennae is replaced
by a O-mode sensitive horn it is in principle possible
to measure magnetic fluctuations as well.

VI. ECE DIAGNOSTIC

In this section the properties of the radiation emit-
ted by the plasma are investigated. A review on the
theoretical aspects of the propagation of microwave
radiation in a plasma can be found in [18].

The radiation results from gyrating electrons at a fre-
quency ωce,

ωce =
e ·B
me · γ

(17)

where γ is the relativistic mass factor. Due to rela-
tivistic effects the radiation is emitted also in higher
harmonics of ωce. Having a spatial varying toroidal
magnetic field as in a tokamak where Bt ∝ 1/R a
relation between the emitted frequency and the lo-
cation within the plasma is possible. In the case of
a maxwellian energy distribution of the electrons the
intensity of the emitted radiation can be related to
the temperature. The emitted frequency spectrum
can be described by Planck’s equation. In a fusion
plasma h̄ω � kTe is fulfilled and the Rayleigh–Jeans
approximation can be used.

I(ω) = B(ω) =
ω2 · Te

8 · π3 · c2
(18)

The measurement of the intensity of the emitted fre-
quency alone is not sufficient. Also the transport of
the radiation from its point of emission within the
plasma to the observing antenna has to be taken into
account. The transport of the radiation is described
by

dI

ds
= j(ω)− I · α(ω) (19)

where s is the ray path and α the absorption coeffi-
cient and j the emissivity which are itself a functions
of the frequency. The differential equation can be
integrated yielding

I(s2) = I(s1) · e−τ21 +
j

α
· [1− e−τ21 ], τ21 = τ2 − τ1

(20)
where τ is the optical depth defined by:

τ =

∫
α(ω)ds (21)

The absorption coefficient is itself a function of lo-
cal plasma parameters as ne, Te, the polarization of
the wave (e.g. X– or O–Mode) and the harmonic
number. With respects to cut-off’s a suitable mea-
surement of the electron temperature is performed
for X-mode perpendicular propagation θ = 90o. In
this case τ can be calculated from a WKB approach
as outlined in paper by Bornatici [18].
For optical thick plasmas (τ � 1) the first term on
the right side of Eq. 20 becomes small, yielding:

T rade =
ω2 · Te

8 · π3 · c2
·
(
1− e−τ

)
(22)

As mentioned above, the propagation of electron cy-
clotron radiation in a plasma is limited by resonances
and cut–off’s. To find those positions we start from
the Appleton–Hartree relation (Eq. 1) again. As al-
ready known from the first section the refractive index
decides about cut–off and absorption frequencies for
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the propagation in X–Mode. Cut–off and resonances
are depending on the local B– and ne–values. For
N2 = 0 a cut–off will reflect the wave. If N2 = ∞ a
resonance will absorb the wave. As can be seen from
the Eq. 3 for X-Mode propagation perpendicular to
the magnetic field we get the following equation for
cut–off,

ωCO1,2 =

√√√√(2ω2
pe + ω2

ce

)
2

±

√(
2ω2

pe + ω2
ce

)2
4

− ω4
pe

(23)
and for resonances in the plasma we get:

ω = ωpe (24)

ω =
√
ω2
pe + ω2

ce (25)

Figure 8: Cut–offs and resonances for a parabolic ne–
profile and Bt = 2.25 T and nmaxe = 5× 1019 m−3 and
R0 = 1.75 m. Furthermore the first three harmonics
of the electron cyclotron frequency are shown

From Fig. 8 it becomes clear that the 1st harmonic
can not be used for ECE-measurements since ωce ≤
ωpe for 1.8 ≤ R ≤ 2 m. But as long as the ne is
small enough the 2nd harmonic is very well suited
to measure the electron temperature. However for
an increased density the cut–off frequency ωco1 over-
comes the 2nd harmonic. Already when the local ne
reaches 80 − 85% of the cut–off density the 2nd har-
monic intensity drops, because of the divergence of
the antenna beam [19]. In this case the 3rd harmonic
must be used. Disadvantage of this method is that
the plasma is not optical thick for the 3rd harmonic.
Also multiple reflections of the radiation due to the
plasma facing walls have to be taken into account.
Therefore the first term in Eq. 20 is not zero and re-
flections from the wall have to be taken into account.

The reflection coefficient ρ of the wall is material de-
pending. For a wall covered by graphite tiles ρ = 0.7
is achieved [20]. The equation for the estimation of
the temperature has to be modified

T rade =
ω2 · Te

8 · π3 · c2
· (1− e−τ )

1− ρ · e−τ
(26)

This method needs the knowledge of the local electron
density and temperature when calculating the optical
depth. The measurement of Te from 3rd harmonic is
restricted to a small frequency range where the fre-
quency range of 2nd and 3rd harmonic do not overlap
(see Fig. 8). Otherwise a mixture of both harmonics
will be measured and yield wrong Te–values.
The radiation measurement at frequencies above f =
70 GHz is difficult since the amplifier in this frequency
range are noisy and the total amplification of the
signal has to be around 80 dB, due to the low in-
put power. To overcome this problem heterodyne ra-
diometers are used for the measurement of Te. They
have a local oscillator for down conversion of the in-
put frequency. As local oscillators Gunn-diodes made
of GaAs are used because they are stable in fre-
quency and have long lifetime compared with other
microwave sources. The HF–frequency is mixed with
the frequency of the local oscillator, yielding an in-
termediate frequency IF. The IF will pass a narrow
filter with ∆f = 100 − 200MHz. This filter is re-
sponsible for the radial resolution of the radiometer.
The noise temperature of such a radiometer is below
Tsys ≤ 1000 K. Unfortunately it is not possible to
sweep the Gunn-diode over a large frequency range
with constant output power therefore a broad-band
mixer is used which covers the region from 2 GHz
to 10 GHz. With a multiplexer and additional nar-
row bandpass filters Te can be measured at several
frequencies using only one LO-oscillator.This kind of
radiometer has in general a higher noise temperature
of Tsys ≈ 4000 K. A typical example of a modern
ECE diagnostic is shown in fig. 9. The system is
installed at Tore Supra [21] and is operated with 4
local oscillators. The mixer cover a frequency range
of 2 GHz to 18 GHz and after the mixer the signal is
filtered and splits into 8 channels each. In total 32
radial positions can be measured with the system.
Beside heterodyne radiometer Michelson–
Interferometer or a grated polychromator are
used to measure Te. The Michelson–Interferometer
is mostly used to measure the emitted microwave
radiation over a large frequency range (e.g. 1st

–4th harmonic). This is done by a vibrational or
pneumatically mirror in the device, allowing a scan
over a large frequency range within ≈ 10 ms. Since
the power transferred to detector is very small the
detector noise has to be reduced as much as possible
by cooling with liquid helium.

VII. AN OUTLOOK TO FUTURE APPLICATIONS
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Figure 9: Modern set up of an ECE system at Tore
Supra. The black dashed line shows thw separation
between the high frequency and the IF part.

What are the main directions in the development of
microwave diagnostics? The rapid increase in the
development of microwave components for the auto-
motive sector will make standard reflectometry diag-
nostics for today devices more cheap. Together with
smaller antennae correlation measurements of turbu-
lence structures could be realised easier. Further-
more the investigations towards 2-dimensional images
from the plasma in the range of microwave frequen-
cies needs advanced antennae technique. First experi-
ments using ECE imaging are successful implemented
at AUG [22]. Recent investigations of synthetic aper-
ture microwave imaging for passive and active oper-
ation have been started at MAST [23]. The system
operates with a time resolution of 10µs and records
images at 16 different frequencies. With such a sys-
tem propagation as well as the pitch angle of turbu-
lence can be studied
Beside the more technical oriented development new
diagnostic ideas show up as the measurement of the
local magnetic field from the pitch angle or equiva-
lent to measure the ellipticity of the reflected beam
cross-section (the axis is aligned with the magnetic
field) using coherent detection techniques with two
orthogonal components [24].
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