001     283681
005     20240711085654.0
024 7 _ |a 10.1016/j.surfcoat.2016.02.005
|2 doi
024 7 _ |a 0257-8972
|2 ISSN
024 7 _ |a 1879-3347
|2 ISSN
024 7 _ |a WOS:000389687600014
|2 WOS
037 _ _ |a FZJ-2016-01978
082 _ _ |a 620
100 1 _ |a Vassen, Robert
|0 P:(DE-Juel1)129670
|b 0
|e Corresponding author
245 _ _ |a Aging of atmospherically plasma sprayed chromium evaporation barriers
260 _ _ |a Amsterdam [u.a.]
|c 2016
|b Elsevier Science
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1458129466_32443
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a Chromium evaporation barriers are frequently used in solid oxide fuel cells to protect the porous cathode from chromium poisoning. Volatile chromium species are generated at the operation temperature of about 600–900 °C in a humid atmosphere for chromia scale forming steels as interconnect materials. In order to reduce this effect, barrier coatings are applied, often by atmospheric plasma spraying. However, also in these coatings microstructural changes as densification and in parallel formation of large pores have been observed. In order to clarify these mechanisms plasma sprayed Mn1.0 Co1.9Fe0.1O4 (“MCF”) are deposited on ferritic steels and furthermore coated with a perovskite based contact layer as used in stack build-up. These coatings are annealed in air up to 1000 h and the microstructural changes and bending of the samples are studied. The results show increasing bending with increasing aging time. High temperature curvature measurements indicate that the amount of bending is not significantly dependent on temperature. As an explanation the creep deformation of the substrate/coating system at high temperatures due to compressive stress levels in the coating is given. The origin of the stress is related to phase changes in combination with the oxidation of the coatings. In addition, interdiffusion and densification processes are discussed.
536 _ _ |a 113 - Methods and Concepts for Material Development (POF3-113)
|0 G:(DE-HGF)POF3-113
|c POF3-113
|f POF III
|x 0
536 _ _ |0 G:(DE-Juel1)HITEC-20170406
|x 1
|c HITEC-20170406
|a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Grünwald, N.
|0 P:(DE-Juel1)165868
|b 1
|u fzj
700 1 _ |a Marcano, D.
|0 P:(DE-Juel1)159408
|b 2
|u fzj
700 1 _ |a Menzler, N. H.
|0 P:(DE-Juel1)129636
|b 3
|u fzj
700 1 _ |a Mücke, R.
|0 P:(DE-Juel1)129641
|b 4
|u fzj
700 1 _ |a Sebold, D.
|0 P:(DE-Juel1)129662
|b 5
|u fzj
700 1 _ |a Sohn, Y. J.
|0 P:(DE-Juel1)159368
|b 6
|u fzj
700 1 _ |a Guillon, Olivier
|0 P:(DE-Juel1)161591
|b 7
773 _ _ |a 10.1016/j.surfcoat.2016.02.005
|g Vol. 291, p. 115 - 122
|0 PERI:(DE-600)1502240-7
|p 115 - 122
|t Surface and coatings technology
|v 291
|y 2016
|x 0257-8972
856 4 _ |u https://juser.fz-juelich.de/record/283681/files/1-s2.0-S0257897216300676-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/283681/files/1-s2.0-S0257897216300676-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/283681/files/1-s2.0-S0257897216300676-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/283681/files/1-s2.0-S0257897216300676-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/283681/files/1-s2.0-S0257897216300676-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/283681/files/1-s2.0-S0257897216300676-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:283681
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)129670
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)165868
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)159408
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129636
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129641
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129662
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)159368
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)161591
913 1 _ |a DE-HGF
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-113
|2 G:(DE-HGF)POF3-100
|v Methods and Concepts for Material Development
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2016
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SURF COAT TECH : 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a No Authors Fulltext
|0 StatID:(DE-HGF)0550
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
920 1 _ |0 I:(DE-82)080011_20140620
|k JARA-ENERGY
|l JARA-ENERGY
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a I:(DE-82)080011_20140620
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21