000283682 001__ 283682
000283682 005__ 20250129094254.0
000283682 0247_ $$2doi$$a10.1016/j.jssc.2016.01.024
000283682 0247_ $$2ISSN$$a0022-4596
000283682 0247_ $$2ISSN$$a1095-726X
000283682 0247_ $$2WOS$$aWOS:000373661100026
000283682 037__ $$aFZJ-2016-01979
000283682 082__ $$a540
000283682 1001_ $$0P:(DE-Juel1)129667$$aTietz, F.$$b0$$eCorresponding author
000283682 245__ $$aMaterial properties of perovskites in the quasi-ternary system LaFeO$_{3}$–LaCoO$_{3}$–LaNiO$_{3}
000283682 260__ $$aOrlando, Fla.$$bAcademic Press$$c2016
000283682 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1458129612_32443
000283682 3367_ $$2DataCite$$aOutput Types/Journal article
000283682 3367_ $$00$$2EndNote$$aJournal Article
000283682 3367_ $$2BibTeX$$aARTICLE
000283682 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000283682 3367_ $$2DRIVER$$aarticle
000283682 520__ $$aAn overview is presented on the variation of electrical conductivity, oxygen permeation, and thermal expansion coefficient as a function of the composition of perovskites in the quasi-ternary system LaFeO3–LaCoO3–LaNiO3. Powders of thirteen nominal perovskite compositions were synthesized under identical conditions by the Pechini method. The powder X-ray diffraction data of two series, namely La(Ni0.5Fe0.5)1−xCoxO3 and LaNi0.5-xFexCo0.5O3, are presented after the powders had been sintered at 1100 °C for 6 h in air. The measurements revealed a rhombohedral structure for all compositions except LaNi0.5Fe0.5O3 for which 60% rhombohedral and 40% orthorhombic phase was found. The maximum DC electrical conductivity value of the perovskites at 800 °C was 1229 S cm−1 for the composition LaCoO3 and the minimum was 91 S cm−1 for the composition LaCo0.5Fe0.5O3. The oxygen permeation of samples with promising conductivities at 800 °C was one order of magnitude lower than that of La0.6Sr0.4Co0.8Fe0.2O3 (LSCF). The highest value of 0.017 ml cm−2 min−1 at 950 °C was obtained with LaNi0.5Co0.5O3. The coefficients of thermal expansion varied in the range of 13.2×10−6 K−1 and 21.9×10−6 K−1 for LaNi0.5Fe0.5O3 and LaCoO3, respectively. 57Fe Mössbauer spectroscopy was used as probe for the oxidation states, local environment and magnetic properties of iron ions as a function of chemical composition. The substitution had a great influence on the chemical properties of the materials.
000283682 536__ $$0G:(DE-HGF)POF3-144$$a144 - Controlling Collective States (POF3-144)$$cPOF3-144$$fPOF III$$x0
000283682 536__ $$0G:(DE-HGF)POF3-524$$a524 - Controlling Collective States (POF3-524)$$cPOF3-524$$fPOF III$$x1
000283682 536__ $$0G:(DE-HGF)POF3-6212$$a6212 - Quantum Condensed Matter: Magnetism, Superconductivity (POF3-621)$$cPOF3-621$$fPOF III$$x2
000283682 536__ $$0G:(DE-HGF)POF3-6213$$a6213 - Materials and Processes for Energy and Transport Technologies (POF3-621)$$cPOF3-621$$fPOF III$$x3
000283682 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x4
000283682 588__ $$aDataset connected to CrossRef
000283682 7001_ $$0P:(DE-Juel1)136661$$aArul Raj, I.$$b1
000283682 7001_ $$0P:(DE-Juel1)129628$$aMa, Q.$$b2
000283682 7001_ $$0P:(DE-Juel1)129587$$aBaumann, S.$$b3
000283682 7001_ $$0P:(DE-Juel1)159434$$aMahmoud, A.$$b4
000283682 7001_ $$0P:(DE-Juel1)130706$$aHermann, Raphael$$b5
000283682 773__ $$0PERI:(DE-600)1469806-7$$a10.1016/j.jssc.2016.01.024$$gVol. 237, p. 183 - 191$$p183 - 191$$tJournal of solid state chemistry$$v237$$x0022-4596$$y2016
000283682 8564_ $$uhttps://juser.fz-juelich.de/record/283682/files/1-s2.0-S002245961630024X-main.pdf$$yRestricted
000283682 8564_ $$uhttps://juser.fz-juelich.de/record/283682/files/1-s2.0-S002245961630024X-main.gif?subformat=icon$$xicon$$yRestricted
000283682 8564_ $$uhttps://juser.fz-juelich.de/record/283682/files/1-s2.0-S002245961630024X-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000283682 8564_ $$uhttps://juser.fz-juelich.de/record/283682/files/1-s2.0-S002245961630024X-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000283682 8564_ $$uhttps://juser.fz-juelich.de/record/283682/files/1-s2.0-S002245961630024X-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000283682 8564_ $$uhttps://juser.fz-juelich.de/record/283682/files/1-s2.0-S002245961630024X-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000283682 909CO $$ooai:juser.fz-juelich.de:283682$$pVDB
000283682 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129667$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000283682 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129628$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000283682 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129587$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000283682 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130706$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000283682 9131_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000283682 9131_ $$0G:(DE-HGF)POF3-524$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x1
000283682 9131_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6212$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x2
000283682 9131_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6213$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x3
000283682 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x4
000283682 9141_ $$y2016
000283682 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000283682 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ SOLID STATE CHEM : 2014
000283682 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000283682 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000283682 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000283682 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000283682 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000283682 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000283682 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000283682 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000283682 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000283682 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x0
000283682 9201_ $$0I:(DE-Juel1)PGI-4-20110106$$kPGI-4$$lStreumethoden$$x1
000283682 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000283682 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x3
000283682 980__ $$ajournal
000283682 980__ $$aVDB
000283682 980__ $$aUNRESTRICTED
000283682 980__ $$aI:(DE-Juel1)JCNS-2-20110106
000283682 980__ $$aI:(DE-Juel1)PGI-4-20110106
000283682 980__ $$aI:(DE-82)080009_20140620
000283682 980__ $$aI:(DE-Juel1)IEK-1-20101013
000283682 981__ $$aI:(DE-Juel1)IMD-2-20101013
000283682 981__ $$aI:(DE-Juel1)JCNS-2-20110106
000283682 981__ $$aI:(DE-Juel1)PGI-4-20110106
000283682 981__ $$aI:(DE-Juel1)IEK-1-20101013