000028375 001__ 28375
000028375 005__ 20240709081718.0
000028375 0247_ $$2DOI$$a10.1023/A:1024030821349
000028375 0247_ $$2WOS$$aWOS:000183325400003
000028375 037__ $$aPreJuSER-28375
000028375 041__ $$aeng
000028375 082__ $$a540
000028375 084__ $$2WoS$$aEnvironmental Sciences
000028375 084__ $$2WoS$$aMeteorology & Atmospheric Sciences
000028375 1001_ $$0P:(DE-Juel1)VDB1780$$aWildt, J.$$b0$$uFZJ
000028375 245__ $$aEmissions of oxygenated volatile organic compounds from plants II : emissions of saturated aldehydes
000028375 260__ $$aDordrecht [u.a.]$$bSpringer Science + Business Media B.V$$c2003
000028375 300__ $$a173 - 196
000028375 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000028375 3367_ $$2DataCite$$aOutput Types/Journal article
000028375 3367_ $$00$$2EndNote$$aJournal Article
000028375 3367_ $$2BibTeX$$aARTICLE
000028375 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000028375 3367_ $$2DRIVER$$aarticle
000028375 440_0 $$03073$$aJournal of Atmospheric Chemistry$$v45$$x0167-7764
000028375 500__ $$aRecord converted from VDB: 12.11.2012
000028375 520__ $$aEmissions of hexanal, heptanal, octanal, nonanal, and decanal from 6 different plant species were measured in continuously stirred tank reactors when the plants were exposed to ozone. Pathogen- and insect attack on plants also led to these emissions. The emission rates of individual aldehydes were related to each other implying a common mechanism for the emissions of these aldehydes. Furthermore, the emission pattern was similar in all cases indicating a similar emission mechanism for different plant species and different elicitors. Measurements with ozone exposed Scots pine plants (Pinus sylvestris L.) showed that the emission rates were dependent on temperature as well as on the ozone flux into the plants. The diurnal variation of aldehyde emissions from ozone exposed Scots pine were described quite well using a formalism including temperature and ozone flux as variables. Assuming the aldehyde emissions to be general for plants exposed to ozone, the global emissions were estimated to be in the range between 7 and 22 Tg/a. Because these emissions can be induced by other factors than ozone uptake alone this estimate may be a lower limit.
000028375 536__ $$0G:(DE-Juel1)FUEK257$$2G:(DE-HGF)$$aChemie und Dynamik der Geo-Biosphäre$$cU01$$x0
000028375 588__ $$aDataset connected to Web of Science
000028375 650_7 $$2WoSType$$aJ
000028375 65320 $$2Author$$aaldehyde emission
000028375 65320 $$2Author$$aozone uptake
000028375 65320 $$2Author$$ainsect attack
000028375 7001_ $$0P:(DE-Juel1)VDB786$$aKobel, K.$$b1$$uFZJ
000028375 7001_ $$0P:(DE-HGF)0$$aSchuh-Thomas, G.$$b2
000028375 7001_ $$0P:(DE-Juel1)VDB578$$aHeiden, A. C.$$b3$$uFZJ
000028375 773__ $$0PERI:(DE-600)1475524-5$$a10.1023/A:1024030821349$$gVol. 45, p. 173 - 196$$p173 - 196$$q45<173 - 196$$tJournal of atmospheric chemistry$$v45$$x0167-7764$$y2003
000028375 8567_ $$uhttp://dx.doi.org/10.1023/A:1024030821349
000028375 909CO $$ooai:juser.fz-juelich.de:28375$$pVDB
000028375 9131_ $$0G:(DE-Juel1)FUEK257$$bEnvironment (Umwelt)$$kU01$$lChemie und Dynamik der Geo-Biosphäre$$vChemie und Dynamik der Geo-Biosphäre$$x0
000028375 9141_ $$y2003
000028375 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000028375 9201_ $$0I:(DE-Juel1)VDB48$$d31.12.2006$$gICG$$kICG-II$$lTroposphäre$$x1
000028375 9201_ $$0I:(DE-Juel1)VDB49$$d31.12.2006$$gICG$$kICG-III$$lPhytosphäre$$x0
000028375 970__ $$aVDB:(DE-Juel1)21905
000028375 980__ $$aVDB
000028375 980__ $$aConvertedRecord
000028375 980__ $$ajournal
000028375 980__ $$aI:(DE-Juel1)IEK-8-20101013
000028375 980__ $$aI:(DE-Juel1)IBG-2-20101118
000028375 980__ $$aUNRESTRICTED
000028375 981__ $$aI:(DE-Juel1)ICE-3-20101013
000028375 981__ $$aI:(DE-Juel1)IEK-8-20101013
000028375 981__ $$aI:(DE-Juel1)IBG-2-20101118
000028375 981__ $$aI:(DE-Juel1)ICG-3-20090406