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E-mail: {w.dapp, m.mueser}@fz-juelich.de

In this work, we present calculations on the leakage of fluid through the gap that forms between
a rigid substrate with microscopic roughness and a flat but elastically deformable counter body
that is pressed against the substrate. We find that the resistance to flow near the percolation
threshold is determined by one, or at most very few constrictions. These constrictions can be
described as saddle points and their contact mechanics determine the critical flow rather than
the gap topography at large scales.

1 Introduction

The leak rate of simple fluids through an interface formed by a seal and a rigid, randomly
rough surface decreases roughly exponentially with intermediate loads L squeezing seal
and surface together1–3. At very high loads, the flow falls off even more quickly with L
and eventually comes to a complete stop. The accepted picture is that beyond a threshold
load, no more percolating open channel exists in which the fluid can pass from one side of
the contact to the opposite side4–6. The analysis of the leak-rate problem has gained recent
momentum mainly for two reasons: the contact mechanics theory by Persson7 allows one
to make quantitative predictions – also for the leakage of seals2–4, 8 – with little numerical
effort. Large-scale computer simulations5, 6, 9–11 have likewise progressed due to algorith-
mic developments and an increase in computing power making it possible to simulate ever
more complex systems.

To describe theoretically the leak-rate of (static) seals, Persson and coworkers have
pursued two approaches. One2 is based on the idea that close to percolation all fluid pres-
sure falls off at the constriction interrupting the last percolating channel at the critical load
Lc. The topography of this critical constriction and thus its flow resistance is determined
with Persson’s contact mechanics theory. The second approach3 is footed on Bruggeman’s
effective medium theory. It allows one to estimate the resistance to Reynolds flow from the
distribution of interfacial separations12. The latter can be deduced to high accuracy from
Persson’s contact mechanics theory4, 13, 14.

Although the leak-rate theory of seals has successfully reproduced both experiments2, 3

and simulations6 in the pressure range where flow is suppressed exponentially with L, it
is questionable whether it also describes flow close to the percolation point. Investigations
on this issue are presented in this contribution. We note that our problem differs from the
random (on/off) resistance networks15, or simple generalisations thereof, like the Lorentz16

or Swiss cheese model, which are often seen as generic models for percolation. In those
models, conductivity is finite or zero in a given bond or domain. In our percolation prob-
lem, the local conductivity evolves smoothly to smaller values as the load increases and
continuously approaches zero when the local gap between seal and substrate closes.
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2 Methods

To find a realistic channel geometry, we need to simulate contacts in which roughness
scales over at least 2− 3 decades of spatial scale. In order to make predictions that can be
compared to continuum theory, the smallest lengthscale has to be sufficiently discretised,
which adds another decade (away from the percolation threshold) or even more near the
percolation point. Thus, in a brute-force analysis of the problem, the linear length of the
system can be easily 105 discretisation points long, which boils down to 1010 surface
grid points in a Fourier-based boundary element method like Green’s function molecular
dynamics (GFMD)17. Modern multi-scale methods that are not based on (fast) Fourier
transforms cannot handle the problem more efficiently, due to the complexity of real
contact (except at very small contact pressures, when contact is only formed at an isolated
mesoscale asperity) and the long-range nature of elastic interactions. Last but not least,
solving Reynolds’ thin-film equation on a given domain can entail lengthy computations,
whose solution time increases with the complexity of the open channel structure unless
efficient solution strategies are pursued. In the following, we summarise the numerical
methods we use.

General setup. We consider a system where there is a reservoir of liquid on one side, with
a fluid pressure of 1, and on the other there is a sink for said liquid, with a pressure of 0.
In the transverse direction the system is periodic. Since the choice of which direction is
vertical and which one is horizontal is arbitrary, for each surface we also calculate the flow
through the corresponding contact with a transposed surface. In addition, we also compute
the flow through a contact where the surface is inverted. We performed these calculations
for 6 different surfaces (with different random seeds).

Main aspects pertaining to contact mechanics. The liquid has to pass through channels
created by pressing a rigid, randomly rough and a compliant, smooth surface against one
another. The surfaces are created by treating the Fourier coefficients of the height spectra
as (complex) random numbers whose first moment disappears and whose second moments
satisfy

〈h̃(q)h̃∗(q)〉 ∝ q−2(1+H)Θ(qs − q), (1)

where H is the Hurst roughness exponent and qs = 2π/λs with λs being the cutoff at short
wavelengths. The elastic side is pressed against this substrate but not allowed to penetrate
it via a hard-wall constraint. The displacement is considered as a scalar, with all lateral
displacements neglected. Details can be found in the literature18.

Main aspects related to computing the flow. We calculate the fluid flow using the stationary
Reynolds thin-film equation. This means that each point in the interface is assigned a
conductivity that scales as the third power of the interfacial separation. The hypre
package19 together with GMRES (generalised minimal residual) methods20 and multigrid
preconditioners is used to solve the sparse discretised Reynolds equation. Our in-house
code is MPI-parallelised and uses HDF5 for I/O.

Scaling tests. Both GFMD and our Reynolds solver scale well with the number of proces-
sors. This is demonstrated in Fig. 1, where we show the extrapolated time it would take
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one MPI rank to make one time step per particle or one iteration per grid point as a function
of the requested nodes. In GFMD, this time is around & 1.3µs with a cumulative loss of
efficiency of a factor of . 2 when increasing the number of cores. The FFTW library de-
composes the domain of a 2-dimensional Fourier transform into stripes. We find that below
a stripe width of 16, the efficiency plummets because communication starts to dominate.
This, together with the limit of 16 GiB of memory per JUQUEEN node limits the max-
imum system size we can tackle to 524, 288 grid cells in linear direction, using 65, 536
cores. A different FFT library with a different domain decomposition may remove this
limitation, and allow the GFMD code to scale across the entire JUQUEEN. The number of
iterations needed to reach convergence does not depend strongly on the system size, and
the complexity of each step scales with O(N logN). Each grid point requires ≈ 128 Byte
of memory.

The Reynolds solver uses hypre, which is parallelised using a square domain decom-
position. We find it ceases to scale well if each processor works on less than 512 × 512
grid points. At this workload per processor, compared to larger squares, the efficiency has
dropped by only . 20%. However, the number of steps to reach convergence increases
with increasing system size and complexity, and thereby sets limits on the maximum prob-
lem size. The memory demands per grid point of the Reynolds solver are greater than that
of GFMD by about a factor of 2 to 4, depending on the specific solver used.

Figure 1. Strong scaling test of GFMD simulations (left) and the Reynolds solver (right) run on JUQUEEN for
system sizes of Nsys = 16, 3842, 32, 7682, and 65, 5362. The abscissae correspond to the number of MPI
ranks, Ncores, while the ordinates show the extrapolated time it would take one core to propagate one grid point
by one time step. Here, ∆t stands for the wall-clock time and Nstep for the number of time steps or iterations.
The arrows indicate a stripe width of 16 (for GFMD), and 512× 512 grid points per process (Reynolds).

3 Results

3.1 Flow through Gaps Between Seals and Self-Affine Rough Surfaces

As the initial step of our simulations, we determine the critical load Lc, which is the ex-
ternal load L squeezing the seal against the self-affine rough surface, above which no
more open fluid channel percolates through the system. We find (for a Hurst exponent of
H = 0.8, which is a typical value for technical and natural surfaces alike) that Lc is the
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load needed to induce a relative (critical) contact area of a∗r = 0.413 ± 0.018. This result
is in line with our previous estimate6 of a∗r = 0.42± 0.02. While this value may seem re-
markably close to the value of ≈ 0.4073 for a square random site-percolation model, there
is no a priori reason why the result should be the same, because the self-affine roughness
induces long-range correlations in the surfaces that are not present in a random-site model.
Additionally our contacts live on a continuum, which we represent by resolving the small-
est wavelength in our system by many points. Their number increases from 4 far from the
percolation threshold to 128 close to it.

Well below the critical load, i.e., at 1−L/Lc & 0.2, we find that the fluid current drops
roughly exponentially with the load. For larger loads, i.e., in the vicinity of the percolation
threshold, see also reference21, the fluid current j disappears according to

j ∝ (Lc − L)β (2)

with β ≈ 7/2. The exponent is deduced from data such as that shown in Fig. 2.
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Figure 2. Disorder-averaged fluid flow j as a function of the reduced load ∆L = 1−L/Lc. Differently coloured
symbols represent different random realisations. For clarity not all available data sets are included in the figure,
but they all show the same critical behaviour. The data are shifted vertically by a factor of up to . 7 to make
them superimpose in the critical region.

To rationalise this behaviour, it is instructive to visualise the fluid flow. This is done in
Fig. 3. It shows that the assumption of the critical junction theory appear to be valid, i.e.,
the fluid pressure drops in quasi-discrete jumps at narrow constrictions. In-between two
constrictions, the fluid pressure is essentially constant.

3.2 Critical Flow in Isolated Constrictions

To rationalise the critical flow in the previous section, we now focus on isolated constric-
tions (see also Ref. 22). These are realised by single-wavelength substrate geometries. The
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Figure 3. Visualisation of flow passing through the gap between a linearly elastic seal and a self-affine rough
substrate (top-down view). A: true contact (black) near the percolation threshold. B: Flow pattern through the
seal. Grey colour marks all non-contact regions that do not belong to the percolating fluid channel. Blue and
green colours indicate the fluid pressure, which drops from one (blue) on the left border of the interface to zero
(green) on the right border. Red and yellow hues indicate the absolute value of the fluid current density. C: Zoom
onto the critical constriction.

simplest considered geometry is the square lattice, i.e., a height profile given by

hsq(x, y)

h0
= 2 + cos

(
2πx

λ

)
+ cos

(
2πy

λ

)
, (3)

for which the simulation cell dimensions along x and y direction are chosen to coincide
with the wavelength λ of the height undulation, that is Lx = Ly = λ. For the realisation
of the hexagonal and its dual triangular lattice, we refer to the literature22. Here, we only
note that their scaling is similar to that of square lattice, although critical contact areas
differ quite substantially, as do the load ratios rL ≡ Lc/Lf , where Lf is the load needed to
go into full contact, while Lc is the critical load at which the contact area percolates. We
found the following numerical values for the relative contact area needed for percolation
ac(sq) = 0.40185(6), ac(tri) = 0.17826(11), and ac(hex) = 0.67323(1). The load ratios
were rL(sq) = 4, rL(hex) = 30, and rL(tri) = 1.4.

In Fig. 4, we confirm the critical exponent that we found in the fractal case, and test
how well Bruggeman theory describes the flow through an isolated constriction. A mean-
field approach cannot reasonably be expected to describe critical behaviour, and indeed, as
expected, it fails to predict flow accurately near the percolation threshold.

Since all three investigated saddlepoints have one positive and one negative height
curvature, they show universal scaling of width, length, and height of the constriction with
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Figure 4. Reynolds flow through a square saddle-point constriction (described by Eq. 3). The inset illustrates the
flow, where black is contact and white is a non-zero gap. The power law exponent is the same as for the fractal
surface, while the Bruggeman mean field approximation predicts a slightly different scaling.

load

g(l, x, y) = |l|ζg±
(
x

|l|χ ,
y

|l|υ
)
, (4)

where l = (L− Lc) /Lc is the reduced load and g± (. . . ) are two master functions de-
pending on whether the critical points is approached from high pressures or low pressures.
The scaling exponents turn out ζ = 6/5, χ = 3/5, and υ = 9/20, which means that they
naturally lead to the observed exponent for the Reynolds flow of β = 3ζ+υ−χ = 69/20.
Only the prefactors and scaling factors depend on the ratio of positive and negative surface
curvature.

Fig. 5 demonstrates this scaling relation. It shows the contact line in the x–y-plane
(top-down view on the contact) in the left panel, and the shape of the gap in the right
panel (x–z-plane, side-view of the contact), very close to the critical point (l ≤ 2%).
The red and blue solid curves are the master functions g± (. . . ) of Eq. 4, which both
asymptotically approach the critical green curve. Different symbols show different saddle-
point geometries, where we omit the hexagonal case, for clarity, and do not overplot the
symbols on all legs of the curves. For all negative reduced loads l (i.e., L < Lc) and all
geometries the points can be scaled to fall exactly on the blue curve, while for positive
reduced loads (L > Lc), the red curve is the pertinent curve. Exactly at the critical point,
the green curve is traced by the data.

This universality is the reason why the critical behaviour in the fractal case is the same
for any of the random realisations we studied, even though the shape of the last constriction
might be very different in every case. We note, however, that the precise magnitude of the
leakage current does depend on the local geometry. Hence it remains impossible to predict
the prefactor of the flow, just its scaling.
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Figure 5. (a) Contact line shape for normal loads below (blue), at (green), and, above (red) the critical load.
(b) Gap on the symmetry axis as a function of the distance from the saddle point. Different symbols represent
different saddle-point geometries and different colours different reduced loads l, as indicated in the caption. Solid
areas and lines are obtained from analytical approximations to the contact shape. At a given value of l, distances
are rescaled according to Eq. 4. Units are chosen such that gap height, length, and width are 1 for |l| = 0.01 in the
square model. From Ref. 22: Wolf B. Dapp & Martin H. Müser Contact mechanics of and Reynolds flow through
saddle points: On the coalescence of contact patches and the leakage rate through near-critical constrictions,
EPL 109 (2015) 44001. Reprinted with permission.

4 Conclusions

In summary, we carried out numerical simulations of contact between an elastic body with
a rigid substrate with self-affine roughness, and computed the fluid flow through the re-
sulting network of narrow channels. We find that, if one stays far enough away from the
percolation point, Persson theory in combination with Bruggeman theory accurately pre-
dicts the leakage to be exponentially decreasing with external load. As the critical point
is approached, at loads of L & 0.9Lc, essentially all fluid pressure drops at a single con-
striction. Then, the dependence of the current on load becomes a powerlaw, as the last
constriction determines the resistance of the entire seal. Unsurprisingly, this is not well
described by mean-field theory, and detailed calculations are necessary to compute the
flow. We found the powerlaw exponent to be β = 69/20, and confirmed and rationalised
this for single-wavelength saddle-point geometries. Independent on the curvature radius of
the constriction, we obtain the same shape of the gap, which causes the universal scaling
behaviour of the resistance.

However, the precise magnitude of the current does depend on the geometry, as that
sets the prefactor of the powerlaw. As such, it is impossible to predict not only at what
mechanical load or pressure a seal (like a faucet) stops dripping but also how it stops
dripping unless detailed calculations are carried out for a specific (disorder realisation of
the) surface. The situation can become even more complex as the universality class can
change when additional features are included into the model such as adhesion between the
surfaces or more realistic flow boundary conditions.
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