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Structural characterisation of intrinsically disordered proteins is highly non-trivial. They exist

as dynamic, highly flexible structural ensembles that undergo conformational conversions on a

wide range of timescales, spanning from picoseconds to milliseconds. Computational methods

may be of great help to characterise these proteins. Here we review recent progress from our

lab and other groups to develop and apply in silico methods for structural predictions of these

highly relevant, challenging systems.

1 Introduction

In the following, we closely follow the more detailed original report in Rossetti, et al.1

(Copyright Elsevier, 2015). Intrinsically Disordered proteins (IDPs) are an important class

of functional proteins with high abundance in nature2–4, specifically in humans, where they

represent almost one third of the genome5, 2–4. Notably IDPs are extensively associated

with human diseases and amyloidosis6, 7. Specifically, 79 % of cancer associated proteins,

57 % of the cardiovascular disease associated proteins and 55 % of neurodegenerative

disease associated proteins are predicted to contain 30 or more consecutive disordered

residues8.

Studying the structural determinants of this class of proteins is the key to under-

stand their role for cellular function and dysfunction in both healthy and altered-disease-

associated pathways. Unfortunately, traditional computational and experimental ap-

proaches have been hampered so far by a variety of challenges. IDPs do not adopt a well-

defined native three-dimensional structure9 and they lack stable tertiary and/or secondary

structures when isolated in solution under near-physiological conditions10 and exist in an

ensemble of states both in solution and when unbound to a ligand in vivo10. This means

that an ensemble of inter-converting conformers is required to describe the conformational

behaviour of IDPs11.

Apparently IDPs do not simply occur as filler material amongst functional well-

structured proteins, instead they are associated with a variety of biological functions2.

IDPs are indeed enriched in signalling and regulatory functions because disordered seg-

ments permit interaction with several proteins and hence the re-use of the same protein

in multiple pathways12, 2, 13, 14. Moreover, IDPs can apply different molecular recognition

mechanisms and functional modes15, 14 compared to the globular proteins. The majority

of IDPs undergo a disorder-to-order transition upon functioning16, 17, a structural transition

from a partially disordered state into a more highly ordered conformation in the com-

plex17, 18, also called folding-upon-binding mechanism (Fig. 1A).
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Figure 1. Schematic of IDPs molecular recognition mechanisms. A) disorder-to-order transition14. B) Binding

commonality19. C) Binding diversity14. Figure from our original report in Rossetti, et al.1 (Copyright Elsevier,

2015) .

The persistence of natively unfolded proteins throughout evolution may reside in ad-

vantages of flexible structure during disorder order transitions in comparison with rigid

proteins10, 20, 21. The potential advantages of intrinsic lack of structure and function-related

disorder-to-order transitions are:

i) Decoupling of specificity from binding strength. IDPs are capable to combine high

specificity with low affinity10. This is due to the fact that folding and binding are cou-

pled for IDPs. Therefore the change in enthalpy is compensated by a much larger loss

of conformational entropy as compared to globular proteins. This results in a lower

absolute value of free-energy, decreasing the stability of the resulting complex22, 3.

ii) Binding commonality in which multiple, distinct sequences fold differently yet each

recognises a common binding surface19 (Fig. 1B). These localised interacting regions

allow IDPs to have an increased modularity as different binding regions can be incor-

porated into the same protein without excessively increasing protein length23.

iii) Binding diversity. IDPs may folds differently to recognise differently shaped partners

by several structural accommodations at the various binding interfaces10, 17, 2, 21 (Fig.

1C). This phenomenon known as one-to-many signalling, illustrate the complexity of

the different binding modes of IDPs and enables an exceptional plasticity in cellular

responses14.

iv) The creation of very large interaction surfaces as the disordered protein wraps-up or

surrounds its partner24 making it possible to overcome steric restrictions10, meaning

that these proteins utilise a much larger fraction of their accessible surfaces compared

to globular proteins25.

v) A increased speed of interaction. IDPs display both faster rates of association by

reducing dependence on orientation factors and by enlarging target sizes and faster
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rates of dissociation10. The great conformational freedom of IDPs in multidirectional

search permits the recognition of distant and/or discontinuous determinants on the

target6, 15. Moreover, their extended structure enables them to contact their partner(s)

over a large binding surface area, which allows the same interaction potential to be

realised by shorter proteins overall15.

All these features collocate IDPs among the major cellular regulators, recognisers, and sig-

nal transducers11. Also IDPs reduced life-time in the cell, possibly represents a mechanism

of rapid turnover of important regulatory molecules21.

The inherent flexibility of IDPs calls upon new experimental and computational strate-

gies for studying these proteins, since describing the ensemble of conformations of IDP at

atomistic level remains a considerable challenge.

In this review we will first discuss the computational strategies that have been devised

to tackle the conformational plasticity of IDPs, complemented by an application from our

lab.

2 Computational Methods for IDPs

Computational methods using physics-based empirical molecular mechanics force fields

increasingly release critical contributions in providing general insights into the behaviour

of IDPs26, 11, 22. However, the dynamic and heterogeneous nature of IDPs presents substan-

tial challenges, in terms of force field accuracy and of conformational sampling capability.

MD simulations are indeed sensitive to the choice of the protein force field, which are typ-

ically parameterised to reproduce the behaviours of folded proteins rather than IDPs, and

thus they may fail to capture important aspects of IDP conformational ensembles27. We

will therefore describe all the different techniques so far used for IDPs.

2.1 Molecular Dynamics and Monte Carlo Simulations

Molecular dynamics (MD) and Monte Carlo (MC) simulations complement experiments

by elucidating chemical details underlying the conformational dynamics of biological

macromolecules28. Unfortunately, it is extremely difficult to adequately sample the con-

formational space accessible to IDPs. In details:

• MD in explicit solvent at room temperature is generally insufficient for achieving con-

vergence in simulated structural ensembles of IDPs, due to their large conformational

space and the so-called kinetic trapping, i.e., the system tends to be confined to local

energy minima29. Such minima are separated by free-energy barriers, whose heights

are often much larger than the thermal energy available to the system29. Therefore

MD is not always suitable to sample the dynamical behaviour of IDPs.

• In MC approaches, stochastic conformational searches are used to efficiently sam-

ple conformations of the protein chain30. MC surmounts energy barriers by moving

through successive discrete local minima in the energy landscape. In this way, MC

sample all the minima of conformational without seeing the energy barriers31.
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2.2 Enhanced Sampling Techniques

These methods achieve a random walk in the potential-energy space, allowing the sys-

tem to easily overcome the energy barriers that separate local minima. Three well-known

approaches for carrying out generalised ensemble MD or MC simulations are the multi-

canonical algorithm32, the simulated tempering33 and the replica exchange method34. They

are very briefly summarised here.

• The multi-canonical algorithm (MUCA) method32 assigns to each state with energy E

a non-Boltzmann weight that is independent of temperature so that a uniform potential

energy distribution is obtained ensuring that all the energy states are sampled with the

same likelihood. This approach was applied to the coupled folding and binding of an

IDP in order to generate the corresponding free-energy landscape35.

• The simulated tempering (ST) performs a free random walk in temperature space.

This random walk, in turn, induces a random walk in the potential energy space and

allows the simulation to escape from states of local energy minima. In ST33, the

temperature of the system is randomly switched between several predefined values.

ST was applied to study the binding mechanism of two IDPs in combination with

classical MD36.

• The replica-exchange method (REM) uses standard Boltzmann weight factors that are

known a priori34. In this method, a number of non-interacting copies (or replicas) of

the original system at different temperatures are simulated in parallel under different

conditions34; at given time intervals, the simulation conditions are exchanged with a

specific transition probability between replica pairs34. A variation is the replica ex-

change solute tempering method, REST237, in which only the protein and the ions

(i.e. the solute) are simulated at different effective temperatures by applying an ap-

propriate potential energy function to each replica. REM could also be coupled with

Monte-Carlo simulations, (REMC)38, 39 to explore the conformation space of IDPs

(see a recent application from our lab below).

New generalised-ensemble algorithms could be obtained by combining the merits of the

above three methods (reviewed in Ref. 40). Another particularly attractive approach to

overcome the sampling bottleneck is to combine large numbers of equilibrium and/or

generalised ensemble simulations using network methods based on MC algorithms like

Markov State Models recently applied also to IDPs41, 42.

2.3 Solvent Representation

In all the methods discussed in the previous sections, the solvent can be represented either

as a continuum model, or as explicit molecules. Traditional explicit solvent protein force

fields arguably provide the most realistic description of solvent, but also significantly in-

crease the system size leading to prohibitive computational cost to sufficiently sample the

immense conformational space of IDPs43. Moreover, explicit solvent force fields are know

to have a tendency to over-stabilise helices44 and overestimate the strength of protein-

protein interactions. A substantial reduction in the computational cost could be obtained

using implicit solvent models45. Recently important advances have been made to greatly
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improve the efficiency and achievable accuracy of implicit solvent models based on gener-

alised Born (GB) approximation, however they do not properly describe short-range effects

where the detailed interplay of a few non-bulk-like water molecules is important and might

be further limited by the specific methodology for calculating the solvation free energy as

well as the physical parameters of the solvation model46. Despite these caveats, implicit

solvent force field has been successfully applied to simulation of regulatory IDPs47, 48.

3 Applications from our Lab

A REMC-derived approach based on an implicit-solvent all-atom potential49 was recently

applied on the disordered N-terminal domain of Prion Protein (PrP)38. We were able to

predict the conformational ensemble of the wild type (WT) and mutated mouse PrPC N-

terminal domain. Importantly, the work shows how pathogenic mutations (PMs) affect

the PrPC binding to functional interactors and/or the translocation38. In Dibenedetto et

al.50, we proposed a computational protocol based on classical MD simulations for inves-

tigating how the conformational space of the IDP alpha-synuclein (AS) is affected by the

binding of an anti-aggregation drug, dopamine (DOP). Specifically, we analysed the con-

formational ensemble of AS, alone and in the presence of the drug, with a newly developed

tool based on the dihedral angle distributions visited during MD50. The latter allows inter-

preting 2D 1H-15N Heteronuclear multiple-quantum correlation (HMQC) spectra of AS

in the presence of the anti-aggregation drug by distinguishing variation of chemical shifts

due to direct contacts with the drug from the ones due to conformational changes of the

AS induced by long-range effects of the binding. Very recently [under review], we have

extended this protocol for the study of the physiological, N-terminally acetylated form of

alpha-synculein (AcAS). We have employed the REST2 method exposed in Sec. 2.2, with

the same force field as in the work of Dibenedetto et al.50. Realistic starting geometries

from this previous work underwent 15 ns of REST2 simulations with 32 replicas after

manually adding the acetyl group to the N-terminus. The obtained ensemble compares

well with experimental measurements of local properties (NMR-chemical shifts) as well

as global properties (hydrodynamic radius, circular dichroism spectra).

4 Conclusions

We have presented recent computational investigations regarding proteins of biological

relevance, whose structure determination poses challenges to experimental techniques. Our

studies of IDPs suggest, as already pointed out, that methods at different resolution might

give important insights in their biological function as well as ligand binding, a process

which is so far not well understood.
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